Math 2150-02 1/27/25

Topic
$$|-What is a$$

differential equation?

Ex: $y' = 2y$
is an ordinary differential
equation (ODE).
To "solve" this equation
we want a function y
that satisfies the equation.
Consider $y = e^{2x}$.
Then, $y' = 2e^{2x}$.
So, $y' = 2y$ if $y = e^{2x}$.

Def: · An equation relating an vaknown function and one or more of its derivaties is called a differential equation. If a differential equation only has regular derivatives 0 of a single function then its called an ordinary differential equation (ODE) If it has partial derivatives its called a partial differential equation (PDE) • The <u>order</u> of a differential equation is the order of

the highest derivative that occuss in the equation.

y' = ZyE<u>x:</u> of order 1 ODE $\frac{E_{X}}{d_{X}^{2}} + \frac{d_{Y}}{d_{X}} + 1 = 0$ y'' + y' + | = 0ODE of order Z y is a function of x $4x^2y'+y=\cos(x)$ Ex:

Here y is a function of x where x is a number. This is an ODE of order 2

 $\frac{E x}{\partial x^2} + \frac{\partial u}{\partial y^2} = 0$ is called Laplace's equation Here U is a function of X and Y. [u = u(x,y)]This is a PDE of order Z

Def: An ODE is called linear if it is of the form $a_{n}(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_{n}(x)y^{(n-1)}$ $+ \alpha_0(x)y = b(x)$ Coefficients only have #'s & x's

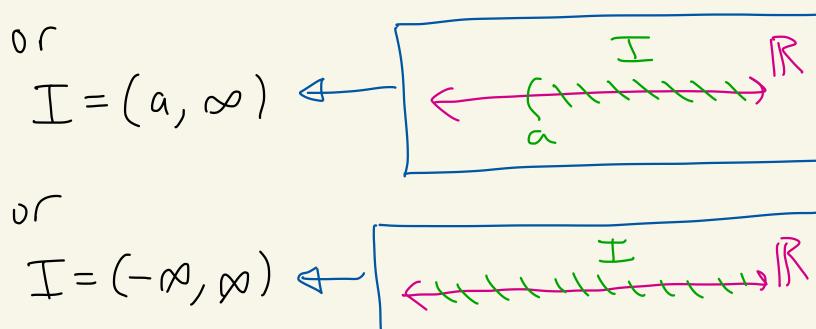
 $-\chi^{\circ}$ $Z \times y'' - \cos(x^2)y' + 2y = e^{x}$ only x's & #'s

a linear ODE 15 order 3. of 2y'' + y' + y = 10xEX: is a linear ODE of order Z. FX: y'y'' - 2xy + 5x = 0X'S & #'s this term makes the equation non-linear

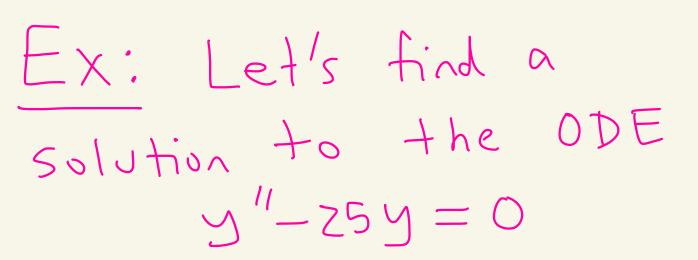
This a non-linear ODE of order 3.

Def: The real number line is denoted by IR $-\frac{e}{12} \quad \frac{52}{52} \quad e \\ +\frac{1}{11} \quad R$ -3-2-101/21Z3

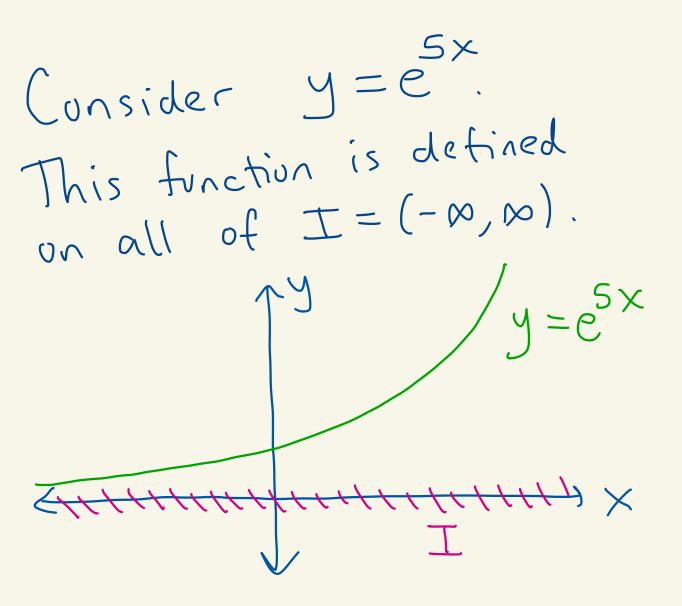
Def: An open interval I is an interval of the form $T = (a, b) \checkmark (1111) \qquad \qquad T \qquad T$



() $f, f', f', \dots, f^{(n)}$ exist on Iand 2) when you plug f and its derivatives into the ODE it solves the equation for every x in I. In addition, sometimes one is given what f(xo), f'(xo), ..., f'(xo) must equal for some Xo in I. This extra condition turns the ODE into an initial-value problem.



 $On \quad I = (-\infty, \infty).$



We have $y = e^{5x}$ these are $y' = 5e^{5x}$ all defined $y'' = 25e^{5x}$ on I

We get $y'' - z5y = Z5e^{5x} - 25(e^{5x}) = 0$ plug y in So, $\gamma = e^{5x}$ Sulues $y''_{25y=0} v_{1} I = (-w, w)$