Math 2150-02 1/29/25

$$f'(x) = -(1-x)^{-2} \cdot (-1)$$

$$= (1-x)^{-2} = \frac{1}{(1-x)^2}$$
Note:
$$f'(x) = \frac{1}{(1-x)^2} = \left[\frac{1}{(1-x)}\right]^2 = \left[f(x)\right]^2$$
So, f satisfies $y' = y^2$.
(2)
$$f(0) = \frac{1}{1-0} = 1$$
So, f satisfies the initial value problem.

HW 1

$$Z(d_{j}e)$$

$$2(d) \quad Let \ c_{1j}c_{2} \ be \ any \ constants.$$
Show that

$$f(x) = c_{1}e^{2x} + c_{2}e^{-2x}$$
Satisfies

$$y'' - 4y = 0$$
on
$$T = (-\infty, \infty),$$
We have:

$$f(x) = c_{1}e^{2x} + c_{2}e^{-2x}$$

$$f'(x) = 2c_{1}e^{2x} - 2c_{2}e^{-2x}$$

$$f''(x) = 4c_{1}e^{2x} + 4c_{2}e^{-2x}$$

$$f''(x) = 4c_{1}e^{2x} + 4c_{2}e^{-2x}$$

Plug y = f, y'' = f'' in to get: $y'' - 4y = (4c_1e^{2x} + 4c_2e^{-2x})$ $-4(c_1e^{2x}+c_2e^{-2x})$ = \bigcirc Thus, $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ Satisfies $y'' - 4y = \hat{O}$ on $I = (-\infty, \infty)$. END OF 2(d) Z(e) Find C,, C2 So that $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ Satisfies the initial-value problem

< ODE y'' - 4y = 0y'(0) = 0 y(0) = 1 y(0

We saw in Z(d) that $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ Satisfies y'' - 4y = 0. Let's find CIJCz So that F'(o) = 0 and F(o) = 1. We have $f(x) = c_1 e^{zx} + c_2 e^{-2x}$ $f'(x) = 2c_1e^{2x} - 2c_2e^{-2x}$

We get

$$\begin{cases} f(0) = 1 \\ f'(0) = 0 \end{cases} \xrightarrow{\ c_1 e^{2(0)} + c_2 e^{-2(0)} = 1 \\ 2c_1 e^{2(0)} - 2c_2 e^{-2(0)} = 0 \\ \hline e^{0} = 1 \\ \hline e^{0} =$$

2 gives $(c_1 = c_2)$ Plug ci=cz into () to get $C_2 + C_2 = [, S_0, 2C_2 =],$ $S_{0}, c_{2} = 1/2$ Thus, $c_1 = c_2 = 1/2$.

So,
$$f(x) = c_1 e^{2x} + c_2 e^{-2x}$$

= $\frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$

Sulves the initial-value problem.

Topic 3 - First-order
linear ODEs
We will give a method
to solve

$$y' + a(x)y = b(x)$$

On some interval I
where $a(x),b(x)$
are continuous.
Since $a(x)$ is
Continuous we
Can find an
ontiderivative
 $A(x) = \int a(x)dx$
So, $A'(x) = a(x)$
First-order
Inear ODEs
Ex: $b(x)=x$
 $y' + 2xy = x$
 $a(x) = x$
 $A(x) = \int a(x)dx$
 $A(x) = \int a(x)dx$
 $A(x) = x^{2}$

CX: Multiply the ODE $e^{x^2}y' + 2xe^{x^2}y = xe^{x^2}$ by eA(x) to get: $e^{A(x)}(y'+a(x)y) = e^{A(x)}b(x)$ $e^{A(x)}y' + e^{A(x)}y = e^{A(x)}b(x)$ EX:) 🗸 $\left(e^{A(x)}, y\right)'$ $\left(e^{x^{z}},y\right)'=xe^{x^{z}}$ Soj $\begin{pmatrix} A(x) \\ C \end{pmatrix} = C \quad b(x)$ Integrate both sides with respect to x to get: A(x) C, $y = \int e^{A(x)} b(x) dx$ Ex: $e^{x}y = \int xe^{x}dx$ Thus,

 $y = e^{-A(x)} \cdot \int e^{A(x)} b(x) dx$ Ex: $\int x e^{x^2} dx = \frac{1}{2}e^{x} + C$ Since you can $e^{x^2}y = \frac{1}{2}e^{x^2} + C$ reverse the steps above this $y = \frac{1}{z}e^{x}e^{x} + Ce^{x}$ is the only $\begin{pmatrix} -x^{2}+x^{2} & 0\\ 0 & = 0 = \end{pmatrix}$ solution to the ODE. $\frac{1}{2} + C e^{\chi^2}$