Math 2150-02 2/12/25

Last time we saw that $2 \times y + (x^{2}-1)y' = 0$ M(x,y) N(x,y) is exact. We had $f(x,y) = x^2y - y$ and x2y-y=c solved the equation. But how would you find such an f? Suppose we don't know what f is. the f needs to satisfy $\frac{\partial f}{\partial x} = M(x,y) \qquad \Rightarrow \qquad \frac{\partial f}{\partial x} = Zxy \qquad ()$ $\frac{\partial f}{\partial x} = N(x,y) \qquad \Rightarrow \qquad \frac{\partial f}{\partial y} = x^{2}-1 \qquad ()$ (use these equations to find f

Pick () to start with: $\frac{\partial f}{\partial x} = 2xy$ Integrate with respect to x to get: $f(x,y) = x^{2}y + C(y)$ constant with respect to x, that is it, unly has #'s and ys We want to plug this into equation (2) so first differentiate with respect to y to get: $\frac{\partial f}{\partial y} = \chi^2 + C'(y)$ Set this equal to equation (2) which said that $\frac{\partial f}{\partial y} = x^2 - 1$.

We get:

$$x^{2} + C'(y) = x^{2} - 1$$

So,
 $C'(y) = -1$
Thus,
 $C(y) = -y + D$
 $F(x,y) = x^{2}y + C(y)$
 $= x^{2}y - y + D$
You can make $D = 0$ because
your just gonna set $f(x,y) = constant$
If you did
 $x^{2}y - y + D = constant$
 $x^{2}y - y = constant - D$ constant

Answer:
$$f(x,y) = x^2y - y$$

HW 5 2(b)
Consider the initial value problem
$$(e^{x}+y) + (z+x+ye^{y})y'=0$$

 $y(o)=1$

 $M(x,y) = e^{x} + y$ these are $N(x,y) = 2 + x + ye^{2}$ Continuous $\frac{9\times}{9N} = 1$ $\frac{\partial M}{\partial x} = e^{x}$ everywhere for all $\frac{\partial N}{\partial y} = e^{2} + ye^{3}$ $\frac{\partial M}{\partial M} = 1$ イッグ Check: $\frac{\partial N}{\partial X} = I = \frac{\partial M}{\partial Y}$ Jo the equation is exact. Thus, there will be an f(x,y) that satisfies: $\frac{\partial f}{\partial x} = e^{x} + y \qquad (1 < \frac{\partial f}{\partial x} = M)$ $\frac{\partial f}{\partial y} = 2 + x + y e^{y} \qquad (2 < \frac{\partial f}{\partial y} = N)$ $\frac{\partial t}{\partial x} = e^{x} t y$

Start with D:

$$\frac{\partial f}{\partial x} = e^{x} + y$$

Integrate with respect to x to get:
 $f(x,y) = e^{x} + yx + C(y)$
Constant with
respect to x
We want to plug this into 2 so
We first take the y derivative
and we get:
 $\frac{\partial f}{\partial y} = x + C'(y)$
Set this equal to 2 which
says $\frac{\partial f}{\partial y} = 2 + x + ye^{y}$ and we get
 $x + C'(y) = 2 + x + ye^{y}$

50, C'(y) = 2 + yeThis results in $C(y) = \int (2 + ye^{y}) dy$ $= 2y + \int ye^{y} dy$ LIATE $\begin{cases} Sudv = uv - Svdu \\ u = y & du = dy \\ dv = e^{y} dy & v = e^{y} \end{cases}$ = Zy+ (ye'- Se'dy) = Zy+ye-e You don't need to add a constant since we will set our f = constant

Thus, $f(x,y) = e^{x} + yx + C(y)$ $= e^{x} + yx + 2y + ye^{y} - e^{y}$ C(y)

So, a solution to $(e^{x}+y)+(z+x+ye^{y})y'=0$ is given by $e^{x} + yx + zy + ye^{y} - e^{y} = c$ f solutionf(x,y) = cWhere c is a constant. This is called an implicit solution to the ODE because We can't solve for y, we just have an equation relating y and X.

Now let's make y(o)=1. Plug in X=0 and y=1 our solution to find C. into We get: e' + (1)(0) + 2(1) + (1)e' - e' = CSo, c=3.

Answer to the initial value Problem is: e^{x} + y x + 2 y + y e^{2} - e^{2} = 3