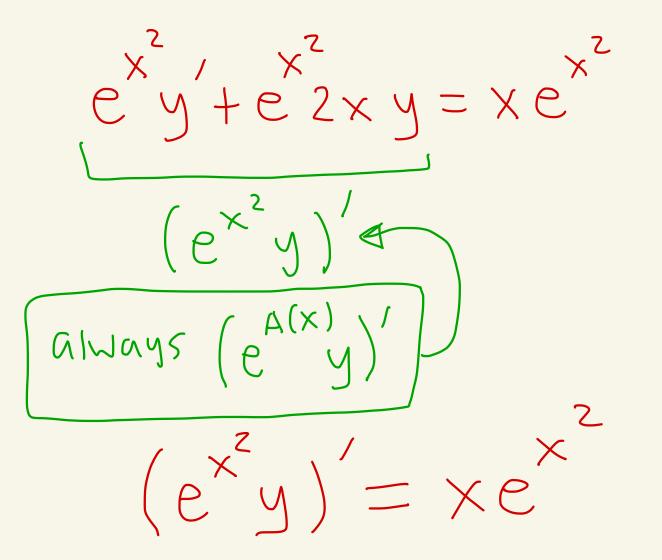


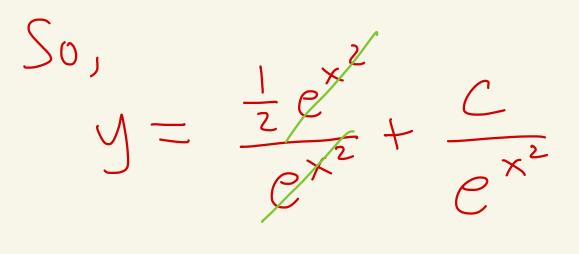
Practice Test 2 (HW I \ | [(e)] $\frac{dy}{dx^2} + \frac{yx^3}{dx} + \frac{dy}{dx} + \frac{x^2y}{dx} = 0$ UDE order 2 not linear -[HW3] (Practice Test 1] (b) Solve linear equation y' + 2xy = X

 $\cup \cap \mathbb{T} = (-\infty,\infty)$

 $A(x) = \int 2x \, dx = 2\frac{x^2}{2} = x^2$ Multiply y+2xy=x by $e^{A(x)} = e^{x^2} + o get$



Integrate: xerdx X' y =6, $\int xe^{x^2} dx = \frac{1}{z} \int e^{y} dy$ = N y = 5x qxy = x qx $\frac{1}{2}e^{+}C$ $\frac{1}{2}e^{+}t$ We get $e^{\chi} q = \frac{1}{2}$



Thus,

$$y = \frac{1}{z} + Ce^{-x^2}$$

HW4
((h)) Solve the separable
problem:

$$Xy' = 4y$$
, $y(1) = 5$

 $\times \gamma' = 4 \gamma$ $\times \frac{dy}{dx} = 4y$ $\frac{1}{y}dy = \frac{4}{x}dx$ $\int \frac{1}{y} dy = \int \frac{4}{x} dx$ $\left[n\left|y\right|=4\left[n\left|x\right|+C\right]$ $e^{\ln|y|} = e^{\ln|x|+c}$ $|y| = e \cdot e$ $|y| = (e^{\ln|x|})^4 \cdot e^{c}$ $|y| = |x|^4 \cdot e^{-2}$ $|\chi|^{4}$

$$|y| = e^{c} \times 4 \qquad = |x^{4}| = x^{4}$$

$$y = \pm e^{c} \times 4$$

$$y = A \times 4 \quad \text{where A is}$$

$$\alpha \text{ constant}$$

Let's make our solution Satisfy y(1) = 5. We need: x = 1y = 5 $y = Ax^{T}$ x = 1y = 5 $5 = A(1)^4 \leftarrow$ $S_0, A=5$ Thus, $y = 5x^{4}$

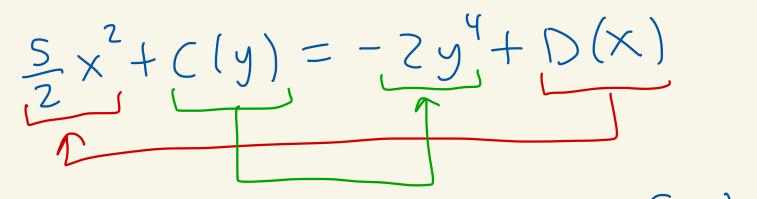
WS $\left(b \right)$ Consider $(5x+4y)+(4x-8y^{3})y=0$ Check that it's exact M = 5x + 4yCuntin- $N = 4X - 8y^3$ 1202 luery- $\partial M = 5$ where JX -24y2 DN = 29 $=\frac{33}{9V}$ heck:

So it's exact. Need f(x,y) where $\frac{\partial f}{\partial x} = 5 \times + 4 \text{ y} \quad (1) \quad \left(\frac{\partial f}{\partial x} = M \right)$ $\frac{\partial f}{\partial y} = 4 \times - 8 \text{ y}^{3} \quad (2) \quad \left(\frac{\partial f}{\partial x} = M \right)$ Integrate () with respect to x: $f(x,y) = \frac{5}{2}x^{2} + 4xy + C(y)$ constant w/ respect to x Integrate 2 with respect to y: $f(x,y) = 4xy - 2y^{4} + D(x)$

Constant with respect to y

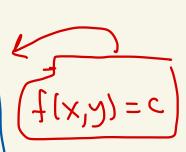
Set equal:

 $\frac{5}{2}x^{2} + 4xy + C(y) = 4xy - 2y^{4} + D(x)$



Set $((y) = -2y^{4}, D(x) = \frac{5}{2}x^{2}$ Plug ((y) into above: $f(x,y) = \frac{5}{2}x^{2} + 4xy + C(y)$ $f(x_1y) = \frac{5}{2}x^2 + 4xy - 2y^4$

Answer $S_{2}x^{2}+4xy-2y^{4}=c$ Where c is any constant Answer



HW7 Solve y'' + 9y = 0 $r^{+}9=0$ $r = \frac{-0 \pm \sqrt{0^2 - 4(1)(9)}}{\sqrt{0}}$ Z(1) $\frac{\pm\sqrt{-36}}{2} = \pm\sqrt{36\sqrt{-1}}$ $=\pm\frac{6i}{2}=\pm3i$ = 0±3% X ± Bi x = 0 B = 3

$$y_{h} = c_{1} \underbrace{e^{ox} \cos(3x) + c_{2} \underbrace{e^{ox} \sin(3x)}_{e^{x} \cos(\beta x)} + c_{2} \underbrace{e^{ox} \sin(\beta x)}_{e^{x} \sin(\beta x)}$$

$$Use \ e^{0x} = e^{0} = 1$$

$$y_{h} = c_{1} \cos(3x) + c_{2} \sin(3x)$$

Hwb

$$Z(c)$$
 Suppose you know
that $y_h = c_1 x^2 + c_2 x^4$
for $x^2 y'' - 5x y' + 8y = D$
and $y_p = 3$ for

 $x^{2}y'' = 5xy' + 8y = 24$ What's the general Solution to $x^{2}y''_{-} 5xy'_{+}8y = 24$

Answer: $(y = y_h + y_f = c_1 x^2 + c_2 x^4 + 3)$