

Suppose we want to find
a particular solution
$$yp$$
 to
 $y'' + a_1(x) y' + a_0(x) y = b(x)$
where $a_1(x), a_0(x), b(x)$ are
continuous on an interval I.
We need to have already
found the general solution to
 $y'' + a_1(x) y' + a_0(x) y = O$
Let's say its
 $y_h = c_1 y_1(x) + c_2 y_2(x)$
where $y_{11} y_2$ are linearly
independent.

Given
$$y_1, y_2$$
 above set
 $y_p = V_1 y_1 + V_2 y_2$
where V_{1,V_2} will be determined.
 $Ex: y''-y=0 \rightarrow y_h = c_1 e_1^* + c_2 e_1^*$
 $y''-y=sin(x) \rightarrow y_p = v_1 e_1^* + v_2 e_1^*$
We want to plug our guess
 $y_p = v_1 y_1 + v_2 y_2$
into
 $y''+a_1(x)y'+a_n(x)y = b(x)$
Let's get the derivatives.
We have

$$y_{p} = V_{1} y_{1} + V_{2} y_{2}$$

$$y_{p}' = V_{1} (y_{1} + V_{1} y' + V_{2} y_{2} + U_{2} y_{2})$$

$$= (V_{1} y_{1}' + V_{2} y_{2}') + (V_{1}' y_{1} + V_{2}' y_{2})$$
We will assume $V_{1}' y_{1} + V_{2}' y_{2} = 0$
to make this casier. It turns out it will still work.
So we get
$$y_{p} = V_{1} y_{1} + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$y_{p}'' = V_{1} y_{1}' + V_{2} y_{2}' \qquad from above assumption$$

$$\begin{pmatrix} v_{1}'y_{1}' + V_{1}y_{1}'' + V_{2}'y_{2}' + V_{2}y_{2}'' \end{pmatrix} \leftarrow y_{p}'' + G_{1}(x) \begin{pmatrix} v_{1}y_{1}' + V_{2}y_{2}' \end{pmatrix} \leftarrow + G_{1}(x)y_{p}' + G_{0}(x) \begin{pmatrix} v_{1}y_{1} + V_{2}y_{2} \end{pmatrix} \leftarrow + G_{0}(x)y_{p} = b(x) \leftarrow = b(x)$$

Rearranging:

$$V_{1}(y_{1}'' + a_{1}(x)y_{1}' + a_{0}(x)y_{1}) \ll$$

 $+ V_{2}(y_{2}'' + a_{1}(x)y_{2}' + a_{0}(x)y_{2}) \ll$
 $+ (V_{1}'y_{1}' + V_{2}'y_{2}') = b(x)$
The above are 0 because $y_{1}y_{2}$
solved $y'' + a_{1}(x)y' + a_{0}(x)y = 0$

We get $V'_1Y'_1 + V'_2Y'_2 = b(x)$ This plus our assumption give us: $V_{1}'y_{1} + V_{2}'y_{2} = 0$ $(1) \leftarrow assumption$ above $(2) \leftarrow derivation$ $(2) \leftarrow derivation$ $(3) \leftarrow derivation$ To solve the above calculate y, * () - y, * (2) to get: $y_{1}y_{1}y_{1} + y_{1}y_{2}y_{2} - y_{1}y_{1}y_{1} - y_{1}y_{2}y_{2}$ $= y_1' \cdot 0 - y_1 \cdot b(x)$

This gives $v_{z}'(y_{1}'y_{z} - y_{1}y_{z}') = -y_{1}b(x)$

$$\int 0_{1} v_{2}' = \frac{-y_{1}b(x)}{y_{1}'y_{2} - y_{1}y_{2}'}$$
Thus,

$$V_{2} = \int \frac{-y_{1}b(x)}{y_{1}'y_{2} - y_{1}y_{2}'} dx$$

$$= \int \frac{y_{1}b(x)}{y_{1}y_{2}' - y_{1}'y_{2}} dx$$

$$= \int \frac{y_{1}b(x)}{y_{1}y_{2}' - y_{1}'y_{2}} dx$$

Similarly if you calculate

$$y'_{2} * (1 - y_{2} * 2)$$

you can derive

$$V_{1} = \int \frac{-y_{2} b(x)}{W(y_{1}, y_{2})} dx$$

Summary:
Suppose you have two linearly
independent solutions
$$y_{1,y}y_{2}$$
 to
 $y'' + a_{1}(x)y' + a_{0}(x)y = 0$
Then a particular solution to
 $y'' + a_{1}(x)y' + a_{0}(x)y = b(x)$
is given by
 $y_{p} = V_{1}y_{1} + V_{2}y_{2}$
where
 $V_{1} = \int \frac{-y_{2}b(x)}{W(y_{1}y_{2})} dx$, $V_{2} = \int \frac{y_{1}b(x)}{W(y_{1}y_{2})} dx$

(