

Topic 8- The method of
undetermined coefficients
We want to be able to
Solve equations of the form:

$$a_2 y'' + a_1 y' + a_0 y = b(x)$$

Where a_2, a_1, a_0 are constants.
Method: (From topics 6 and 7)
(1) Find the general solution y_h to
 $a_2 y'' + a_1 y' + a_0 y = 0$
(2) Find a particular solution y_p to
 $a_2 y'' + a_1 y' + a_0 y = b(x)$
(3) Then the general solution to
 $a_2 y'' + a_1 y' + a_0 y = b(x)$

 $15 Y = Y_h + Y_e$

For tupic & we guess yp based On what b(x) is. There's a table in the "cheat sheet" handout to de this. It's this;

Undetermined coefficients guess for y_p :

e nuever minea coefficients gaess for gp.	
b(x)	y_p
constant	A
5x-3	Ax + B
$10x^2 - x + 1$	$Ax^2 + Bx + C$
$\sin(6x)$	$A\cos(6x) + B\sin(6x)$
$\cos(6x)$	$A\cos(6x) + B\sin(6x)$
e^{3x}	Ae^{3x}
$(2x+1)e^{3x}$	$(Ax+B)e^{3x}$
$x^2 e^{3x}$	$(Ax^2 + Bx + C)e^{3x}$
$e^{3x}\sin(4x)$	$Ae^{3x}\cos(4x) + Be^{3x}\sin(4x)$
$e^{3x}\cos(4x)$	$Ae^{3x}\cos(4x) + Be^{3x}\sin(4x)$
$5x^2\sin(4x)$	$(Ax^{2} + Bx + C)\cos(4x) + (Dx^{2} + Ex + F)\sin(4x)$

Ex: Find the general solution to: $y'' + 3y' + 2y = 2x^{2}$ Step 1: Solue y'' + 3y' + 2y = 0The characteristic equation is Factoring way (r+1)(r+2)=0 $r^{2} + 3r + 2 = 0$ $\Gamma = -\frac{3 \pm \sqrt{3^2 - 4(1)(2)}}{2(1)}$ The roots are: r = -1,-2 $= \frac{-3\pm\sqrt{1}}{2} = \frac{-3\pm1}{2}$ =-3+1, -3-1 = -1, -2So, $y_h = c_1 e^{-x} + c_2 e^{-2x}$

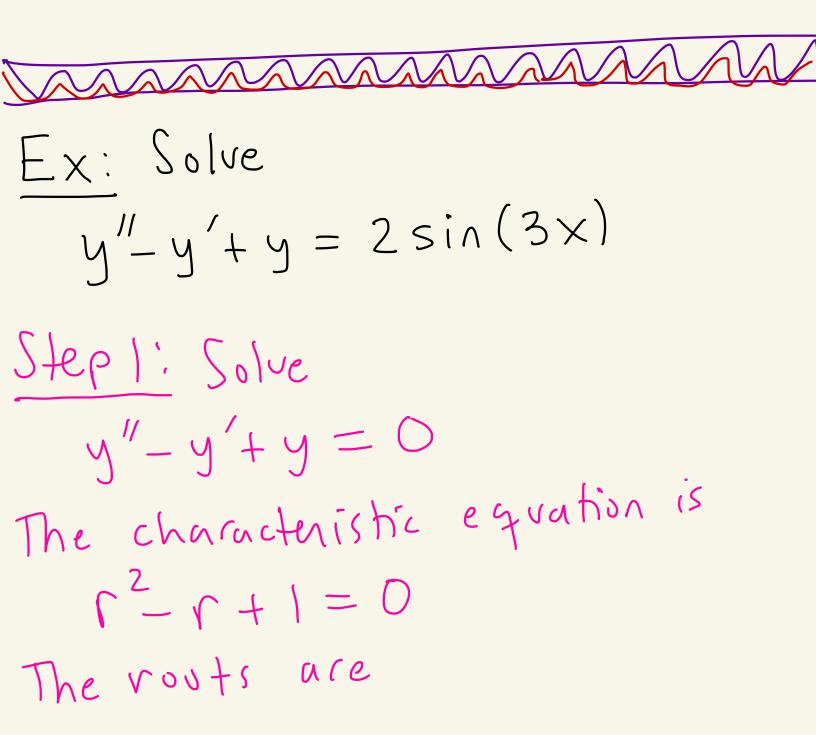
Step 2: Guess a solution yp to $y'' + 3y' + 2y = 2x^{2}$ $y_p = Ax' + Bx + C$ guess We $y_p' = 2Ax + B$ We have $y_{e}^{\prime\prime} = 2A$ and into the equation to get Plug these $(ZA) + 3(ZAX+B) + 2(Ax^{2}+BX+C) = 2x^{2}$ $Y''_{P} \qquad Y''_{P}$ Simplify the left side $2A+6A\times +3B+2A\times^{2}+2B\times +2C=2\times^{2}$ Group like terms: $\frac{2A}{z} + \frac{(6A+2B)}{x} + \frac{(2A+3B+2C)}{0} = 2x^{2}$

Need
$$2A = 2$$

 $6A + 2B = 0$
 $2A + 3B + 2C = 0$
(1) gives $A = 1$.
Plug $A = 1$ into (2) to get:
 $6(1) + 2B = 0$
 $B = -3$
Plug $A = 1, B = -3$ into (3) to get:
 $2(1) + 3(-3) + 2C = 0$
 $C = 7/2$
So,
 $Y_{p} = A x^{2} + B x + C = x^{2} - 3x + 7/2$

Step 3: Thus, the general solution to $y'' + 3y' + 2y = Zx^2$

15 $y = y_{h} + y_{p}$ $y = c_1 e^{-x} + c_2 e^{-2x} + x^2 - 3x + \frac{7}{2}$



$$r = \frac{-(-1) \pm \sqrt{(-1)^{2} + 4(1)(1)}}{2(1)} = \frac{1 \pm \sqrt{-3}}{2}$$

$$= \frac{1 \pm \sqrt{3}\sqrt{-1}}{2} = \frac{1 \pm \sqrt{3} \pm 2}{2}$$

$$= \frac{1}{2} \pm \frac{\sqrt{3}}{2} \pm \frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{\pm \beta} \pm \sqrt{3}}{\sqrt{-1} + 2} = \frac{\sqrt{3}}{2}$$
(Formula:

$$y_{h} = c_{1}e^{dx} + c_{2}e^{dx} + c_$$

Step 2: Now find yp for y''-y'+y=Zsin(3x) <b(x)Guess this: $y_p = A \sin(3x) + B \cos(3x)$ $y_p = 3A\cos(3x) - 3B\sin(3x)$ We have $y_p'' = -9A\sin(3x) - 9B\cos(3x)$ Plug these into the equation; Y" (-9Asin(3x) - 9Bcos(3x)) $-(3A\cos(3x)-3B\sin(3x))$ 2 - 7p +(Asin(3X)+Bcos(3X))= 2sin(3X)

Gather life terms:

$$(-8A+3B)\sin(3x) + (-3A-8B)\cos(3x)$$

$$= 2\sin(3x)$$
Need: $-8A+3B=2$
 $-3A-8B=0$
(2)
In (2) we get $A = -\frac{8}{3}B$.
Plug this into (1) to get:
 $-8(-\frac{8}{3}B)+3B=2$
So, $\frac{73}{3}B=2$
So, $B = \frac{6}{73}$
Then $A = -\frac{8}{3}B = -\frac{8}{3}(\frac{6}{73}) = -\frac{16}{73}$
So,
 $y_p = -\frac{16}{73}\sin(3x) + \frac{6}{73}\cos(3x)$

Step 3: The general solution to y'' - y' + y = 2 sin(3x)ís $y = y_h + y_p$ $= c_1 e^{\frac{x}{2}} c_0 s \left(\frac{\sqrt{3}}{2} x \right) + c_2 e^{\frac{x}{2}} sin \left(\frac{\sqrt{3}}{2} x \right)$ $\frac{-16}{73}\sin(3x) + \frac{6}{73}\cos(3x)$