Math 2150
8-26-24

$$
y'' - y = 0
$$
\n
$$
y'' - y = 0
$$
\n
$$
y = y(x)
$$
\nFind a function h $p \log \ln h$

\n
$$
y + h \sin \omega e + h e \exp \frac{2 \pi d \omega e e}{2}
$$
\n
$$
1 e + y = e^{x}
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y'' - y = e^{x} - e^{x} = 0
$$
\n
$$
y(x) = e^{x} - e^{x} = 0
$$
\n
$$
y(x) = e^{x} - e^{x} = 0
$$
\n
$$
y(x) = e^{x} - e^{x} = 0
$$

Def: An ODE is called of the form linear if it is $\underbrace{(a_{n}(x))_{n+1}^{(n)}a_{n-1}(x)}_{(n-1)}a_{n+1}+a_{n}(x)a_{n+1}^{(n)}a_{n}(x)a_{n+1}=\underbrace{(a_{n-1}(x))_{n+1}^{(n)}a_{n+1}(x)}_{(n-1)}$ (that is, the coefficients of y^(k) terms) Ex: $X^{2}y' - 3y' + 2ln(x)y = 3x$ $G_1(x) = -3$
 $G_2(x) = 2\int_{\Omega(x)}$ $b(x)$ $Q_2(x)$ $= x^2$ Is a linear ODE.

 $Ex: y' - 13x^3y = 10$ linear not E_{X} $(y^{2})y'' + 10xy = x^{3}$ \int ; near $\frac{Ex}{v}$ $\frac{x}{v}$ $\frac{3}{v}$ $\frac{(10)}{v}$ $\frac{5x sin(x) y = sin(y)}{v}$ C_{hidden} Def: The real number line is denoted by IR $2 - 1.5$
-2 -1 0 $\frac{1}{2}$ 1 2 2 0

↓Lef : ^A real-valued function ^f is ^aolution to an n-th order ODE on an open interval I if Of, fit",,..., I'v exist on I and & When you plugf and its derivatives into the ODE it solves the equation for all ^X in I . In addition, sometimes one is given what f(x), f(xol, ... f(n- (x) must equal for someXo in ^F. This extra condition turns the ODE into an initial-value - problem

Ex: Let's show that $f(x) = e^{x}$ is a solution to ^y' - y $show that$
 $is a solution to
\n= 0 4
\nline $0$$ on $(y - y = 0$ $=$ $(-\infty, \infty)$ Ex: Let's show that
 $F(x) = e^{x}$ is a solution to
 $y'-y=0$

on the interval $T=(-\infty,\infty)$

on the interval $T=(-\infty,\infty)$

Or $f(x)=e^{x}$
 $f'(x)=e^{x}$
 $F(x)=e^{x}$
 1 Both f and f'exist on * 44
I . $2 If you plug in $y=f=e^{x}$$ and $y' = f' = C$ $x + h$ en works * for $y - y = e^x$ e \times = 0 [all X in I $y' - y = e^{x} - e^{y} = 0$ on I.

$$
\begin{array}{ll}\n\boxed{\text{Ex: Consider the ODE}} \\
y'' - 4y = 0 \\
\text{On } \boxed{1} = (-m, m) \\
\boxed{e + f(x) = ce^{2x} \text{ where } c} \\
\text{is any constant.} \\
\boxed{e + s \text{ show } f \text{ solves the}} \\
\boxed{e + s \text{ show } \boxed{1} = (-m, m)} \\
\boxed{0 + (x) = ce^{2x} \text{ and defined}} \\
\boxed{0 + (x) = 2 \text{ ce} \text{ as } \boxed{0} \\
\boxed{f'(x) = 2 \text{ ce} \text{ as } \boxed{0} \\
\boxed{f'(x) = 4 \text{ ce} \text{ as } \boxed{1} = (-m, m)} \\
\boxed{2 \text{ Plugging these in the HeODE}} \\
\text{we get } (y = f, y' = f, y' = f', y'' = f'')\n\end{array}
$$

 $y'' - 4y = 4ce^{2x} - 4(ce^{2x}) = 0$ S_9 , $y = Ce^{2x}$ solves $y'' - 4y = 0$
on $T = (-\infty, \infty)$. Note: c can be any number so me just found an infinite $\# of solubius by "4y=0$ on $I = (-\infty, \infty)$.
Some are: Ze^{2x} , $10e^{2x}$, Ze^{2y} , $12e^{2y}$ initial value Ex: Consider the $P13619M$
 $y'' - 49 = 0$ $y(0) = 5, y'(0) = 10$ $\left(\frac{\text{initial}}{\text{conditions}}\right)$

We want to solve this on I $= (-\infty, \infty)$ $2\times$ We know y = ce^{2x} solves $y'' - 4y = 0$. Can we make it also an we make:
satisfy $y(o) = 5$, $y'(o) = 10$? $y(s) = 5$ becomes $2X$ $y(0)=0$ $y(c)$ $y = Ce^{\frac{2x}{x}}$ $5 = c e^{2(c)}$ $y = CC$
 $y' = Zce^{2x}$ So need o $\overline{}$ n eed o I $5 = c$ = ce^{2x} solves
 $y(e) = 10$
 $y(e) = 5$ become!
 $y(e) = 10$
 $y(e) = 5$ become!
 $5 = ce^{2(0)}$
 $5 = Ce^{2(0)}$
 $5 = Ce$
 $5 = c$
 $10 = 2c$ $\overline{y'(0)} = log_{c}b$ ecomes $\frac{1}{10} = \frac{10}{20}$ $10 = 2c$
 $10 = 2c$ $5 = c$

So,
$$
y = 5e^{2x}
$$
 will solve

$$
c = 5
$$

$$
y'' - 4y = 0
$$

$$
y(0) = 5, y'(0) = 10
$$

ON $I = (-\omega^{\dagger} \omega)$

$$
S_{y} f'(x) = (f(x))^{2}
$$

\nThus, f solves $\frac{dy}{dx} = y^{2}$.
\n
$$
Y_{yn} can say that f(x) = c-x
$$

\n
$$
S_{0}u(x, y') = y^{2}
$$
 on
\n
$$
T = (-x, c)
$$

\n
$$
S_{0}u(x, y') = y^{2}
$$
 on
\n
$$
T = (-x, c)
$$

\n
$$
S_{0}u(x, y') = y^{2}
$$
 on
\n
$$
T = (c, x)
$$
.
\n
$$
S_{0}u(x, y') = y^{2}
$$
 on
\n
$$
S_{0}u(x, y') = S_{0} \quad T = (c, x)
$$
.