Math 2150 8-26-24

Ex:

$$y'' - y = 0$$
 $y = y(x)$
 $z_{nd order$
Find a function to plug in for
 y to solve the eqn.
Let $y = e^{x}$.
Then $y' = e^{x}$, $y'' = e^{x}$.
So,
 $y'' - y = e^{x} - e^{x} = 0$
So $y = e^{x}$ solves the ODE.

Def: An ODE is called of the form linear if it is $(u_{n}(x)y' + u_{n-1}(x)y' + \dots + u_{n}(x)y' + u_{n}(x)y = b(x)$ (that is, the coefficients of y^(k) terms) only have x's and constants in them Ex' $X^{2}y^{\prime} - 3y^{\prime} + 2l_{n}(x)y = 3x$ $a_1(x) = -3$ $g_0(x) = 2/0(x)$ 6(x) $G_2(X)$ $=\chi^2$ is a linear ODE.

Ex: $y' - 13x^3y = 10$ linear Not $E_{X:} \qquad y^2 y'' + |0 \times y = x^3$ linear $\frac{E_X}{\sqrt{2}} \frac{3}{\sqrt{2}} \frac{(10)}{\sqrt{2}} \frac{5 \times \sin(x)y}{\sqrt{2}} = \sin(y)$ not linear Def: The real number line is denoted by IR $\begin{array}{c|c} -1.5 \\ \leftarrow ++++++++ \\ -2 & -1 & 0 \\ \hline & 1 \\ \end{array}$

Ex: Let's show that $f(x) = e^{x}$ is a solution to y'-y=0 « linear ODE on the interval $I = (-\infty, \infty)$ $(f(x) = e^{x}) + e^{x} + e^$ Both f and f'exist on I. (2) If you plug in y=f=e^x and $y' = f' = e^{x}$ then $y' - y = e^{x} - e^{x} = 0$ for all x all x for x fo

Ex: Consider the ODE

$$y''- 4y = 0$$

on $I = (-\infty, \infty)$
Let $f(x) = Ce^{2x}$ where c
is any constant.
Let's show f solves the
ODE on $I = (-\infty, \infty)$.
(I) $f(x) = ce^{2x}$ these are
 $f'(x) = 2ce^{2x}$ these are
 $f'(x) = 4ce^{2x}$ In defined
 $n = (-\infty, \infty)$
(2) Plugging these into the ODE
we get $(y=f, y'=f', y''=f'')$

 $y'' - 4y = 4ce^{2x} - 4(ce^{2x}) = 0$ So, $y = ce^{2x} \text{ solves } y^{n} - 4y = 0$ on $T = (-\infty, \infty)$. Note: c can be any number So we just found an infinite # of solutions to y=4y=0 $on \quad \mathbf{I} = (-\infty, \infty).$ on I = (-10, 10). Some are: Ze^{2x} , $10e^{2x}$, $-1e^{2x}$. c = 2, c = 10, $c = -\frac{1}{2}$ initial Value Ex: Consider the $\frac{p_{0}}{y''} - 4y = 0$ $y(o) = 5, y'(o) = [0 \\ conditions$

We want to solve this on $I=(-\infty,\infty)$ We know y=ce^{2x} solves y'' - 4y = 0. Can we make it also satisfy y(0) = 5, y'(0) = 10?y(o)=5 becomes $y = Ce^{2x}$ $y' = 2ce^{2x}$ $5 = ce^{z(o)}$ So need o 5=Ce5=c 1 y'(0) = 10 becomes z(0)lv = 2celo = 2c5 = c

So,
$$y = 5e^{2x}$$
 will solve
 $c = 5$
 $y'' - 4y = 0$
 $y(0) = 5, y'(0) = 10$

on $I = (-\infty, \infty)$

