Math 2150 9/4/24

Topic 3 - First order linear ODES

A first order linear ODE is an equation of the form: $a_{1}(x)y' + a_{0}(x)y = g(x)$ If we are considering an interval I where we want to find the Solution and $a_1(x) \neq 0$ for all x in I, then we can divide through by q.(x) to get y' + a(x)y = b(x)

where
$$a(x) = \frac{a_0(x)}{a_1(x)}$$
 and $b(x) = \frac{g(x)}{a_1(x)}$
This is the kind of equation
We will solve.
Suppose we want to solve
 $y' + a(x)y = b(x)$ (*)
on some interval I where
 $a(x), b(x)$ are continuous
on I.
Since $a(x)$ is
 $(x) = b(x) = x$
 $y' + 2x y = x$
 $a(x) = 2x$
 $a(x) = 52x dx = x^2$

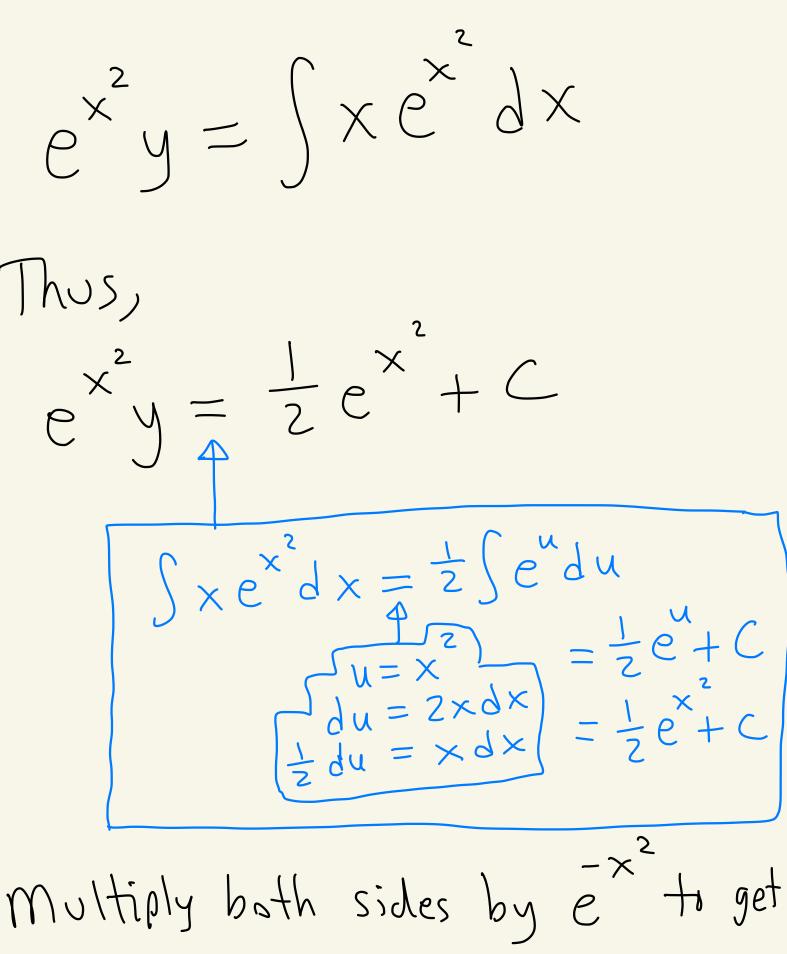
$$A(x) = \int a(x) dx \text{ on } I.$$

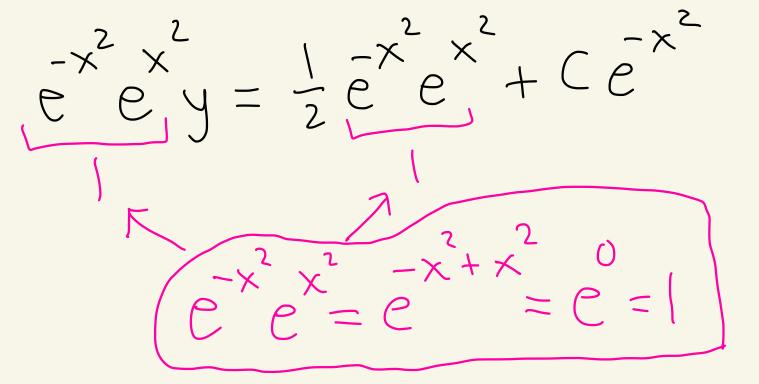
So, $A'(x) = a(x).$
Multiply (x) by $e^{A(x)}$
to yet:
 $e^{A(x)} y' + e^{A(x)} a(x)y = e^{A(x)} b(x)$
 $(e^{A(x)}y)'$
 $(fg)' = f'g + fg'$
So we yet
 $(e^{A(x)}y)' = e^{A(x)} b(x)$
Let $B(x) = \int e^{A(x)} b(x) dx$

be an anti-derivative
of
$$e^{A(x)} b(x)$$
.
So by integrating we get
 $e^{A(x)} = B(x) + C$
where C is a constant

 $y = e \cdot B(x) + Ce^{-A(x)}$ Thus, So y must be of this form. Since you can reverse the Steps above any function of this form will be a solution and this is the general solution.

Ex: Solve y' + 2xy = x $y' + Z \times y = x$ $\mathbb{I} = (-\infty,\infty).$ Let A(x)= J2xdx $= X^2$ Multiply by $e^{A(x)} = e^{x^2}$ to get; $e^{x^{2}} + e^{x^{2}} + e^{x$ This gives $\begin{pmatrix} x^2 \\ e^2 \cdot y \end{pmatrix} = x e^2$





We get $y = \frac{1}{2} + Ce^{-x^2}$ This is the general solution to y' + 2xy = x $I = (-\infty, \infty).$ $\cap \cap$

Ex: Let's solve

$$y' + \cos(x)y = \sin(x)\cos(x)$$
on $I = (-\infty, \infty)$.
Let $A(x) = \int \cos(x) dx = \sin(x)$.
Multiply by $e^{A(x)} = e^{\sin(x)}$ to get:

$$e^{\sin(x)} + e^{\sin(x)} \cos(x)y = e^{\sin(x)} \sin(x)\cos(x)$$
($e^{A(x)}y$)'
We get
 $(e^{A(x)}y)' = e^{\sin(x)} \sin(x)\cos(x)$

So $sin(x) = \int e^{sin(x)} sin(x) cos(x) dx$

 $\int e^{\sin(x)} \sin(x) \cos(x) dx =$ $= \int e^{t} \cdot t \, dt = \int t e^{t} \, dt$ $t = sin(x) = te^{t} \int e^{t} dt$ dt = cos(x) dxu=t du=dt $dv=e^{t}dt$ $v=e^{t}$ Sudv = uv-Judn $= te^{t} - e^{t} + C$ $= sin(x)e^{sin(x)} - e^{sin(x)}$

So,

$$e^{\sin(x)} = \sin(x)e^{\sin(x)} - e^{\sin(x)} + C$$

Thus,
 $y = \sin(x) - 1 + Ce^{-\sin(x)}$
is the general

Solution.

Ex: Solve $xy' + y = 3x^{3} + 1$ $On I = (0, \infty).$ Divide by x to get $y' + \frac{1}{x}y = 3x + \frac{1}{x}$ aren't defined a + x = 0.So thats why Let $A(x) = \int \frac{1}{x} dx$ We will solve $= | \wedge (\times)$. for x>0 $v \in T = (v, \infty)$ We multiply by $e^{A(x)} = e^{\ln(x)} = x$ to get

$$x \left(y' + \frac{1}{x} y \right) = x \left(3x^{2} + \frac{1}{x} \right)$$

that is

$$x y' + y = 3x^{3} + 1$$

This is

$$\left(x y \right)' = 3x^{3} + 1$$

$$\left(e^{A(x)} y' \right)'$$

Integrate both sides to get

$$x y = \int (3x^{3} + 1) dx$$

So,

$$x y = \frac{3}{4} x^{4} + x + C$$

Thus,

$$y = \frac{3}{4}x^{3} + 1 + \frac{5}{x}$$
is the general solution
to $xy' + y = 3x^{3} + 1$ on $I = (0, \infty)$.

$$\overline{Ex: \text{ Solue the initial-value problem}}$$

$$\overline{xy' + y} = 3x^{3} + 1$$

$$y(1) = 2$$
on $I = (0, \infty)$
We sow that the general sol
to $xy' + y = 3x^{3} + 1$ is

$$Y = \frac{3}{4} x^{3} + 1 + \frac{2}{x}$$

We want $y(1) = 2$.
Plug in $x = 1$, $y = 2$ into to get
 $2 = y(1) = \frac{3}{4}(1)^{3} + 1 + \frac{2}{1}$

