Math 2550-04 11/4/24

$$(Topic 7 continued...)$$

$$Ex: In IR^{3}, let$$

$$W = \{\langle x, y, z \rangle \mid x + y = 0 \\ y - 5z = 0 \}$$

$$Last time we had a theorem
called "homogeneous subspace
theorem" that tells us that
W is a subspace of IR3.$$

Let's find a basis for W.
Suppose
$$\vec{v} = \langle x, y, z \rangle$$
 satisfies
 $\begin{pmatrix} x+y &= 0 \\ y-5z &= 0 \end{pmatrix}$ already
reduced
leading: x, y
file: Z

Soluing: Z = t 3y = 5z = 5t1x = -y = -5t

Thus,

$$\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -5t \\ 5t \\ 5t \end{pmatrix} = t \begin{pmatrix} -5 \\ 5 \\ 1 \end{pmatrix}$$

 $So, M = Span(\langle -5,5,1\rangle)$

Theorem (Dimension is well-defined) Suppose Wis a subspace of IR and you have two buses Idea: $B_1 = \begin{bmatrix} \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \end{bmatrix}$ and dim(w) = a $\beta_2 = \left[W_1, W_2, \dots, W_b \right].$ dim(w) = bso you better have a=b Then, $\alpha = b$. way Below is the usval to define subspace. Theorem: Let W be a subset of TR. Then Wis a subspace if and only if the following 3 conditions hold:

(1)
$$\vec{O}$$
 is in \vec{W}
(2) if \vec{V}_1, \vec{V}_2 are in \vec{W}_1 , then
 $\vec{V}_1 + \vec{V}_2$ is in \vec{W}_1 .
(3) if \vec{W}_1 is in \vec{W}_1 and \vec{d}_1 is
a real number, then \vec{d}_1
is in \vec{W}_1 .
(1) $\vec{V}_1 + \vec{V}_2$
(2) $\vec{V}_1 + \vec{V}_2$
(3) $\vec{V}_1 + \vec{V}_2$
(4) $\vec{V}_1 + \vec{V}_2$
(5) $\vec{W}_1 + \vec{V}_2$
(6) $\vec{W}_1 + \vec{V}_2$
(7) $\vec{V}_1 + \vec{V}_2$
(8) $\vec{V}_1 + \vec{V}_2$
(9) $\vec{V}_2 + \vec{V}_1 + \vec{V}_2$
(9) $\vec{V}_2 + \vec{V}_2$
(9) $\vec{V}_1 + \vec{V}_2$
(9) $\vec{V}_2 + \vec{V$

Test review starts now...
HW 4-Part 1
(a) Determine if A and B are
inverses where

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 42 \\ 0 & 42 \end{pmatrix}$
We need to check if $AB = I$.
We get
 $AB = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 42 \\ 0 & 42 \end{pmatrix}$
 $= \begin{pmatrix} (1)(1)+(-1)(0) & (1)(\frac{1}{2})+(-1)(\frac{1}{2}) \\ (0)(1)+(2)(0) & (0)(\frac{1}{2})+(2)(\frac{1}{2}) \end{pmatrix}$

 $= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}_{\mathbf{Z}}$ Since AB=Iz we know that inverses. A and B are HW 4-Part 1 3(a) Find A-1 if it exists where $A = \begin{pmatrix} 3 & 4 & -1 \\ 1 & 0 & 3 \\ 2 & 5 & -4 \end{pmatrix}$ We get 5001: $\begin{pmatrix}
3 & 4 & -1 & | & 1 & 0 & 0 \\
1 & 0 & 3 & | & 0 & | & 0 \\
2 & 5 & -4 & | & 0 & 0 & |
\end{pmatrix}$ Turn left side into identity

identity $\begin{array}{c} R_{1} \leftrightarrow R_{2} \\ \hline \\ \end{array} \\ \begin{array}{c} 1 \\ 3 \\ \hline \\ \end{array} \\ \begin{array}{c} 3 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ -1 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$ $-3R_{1}+R_{2} + R_{2} + R_{2} \begin{pmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 4 & -10 & 1 & -3 & 0 \\ 0 & 5 & -10 & 0 & -2 & 1 \end{pmatrix}$ $-2R_{1}+R_{3} + R_{3} \begin{pmatrix} 0 & 5 & -10 & 0 & -2 & 1 \\ 0 & 5 & -10 & 0 & -2 & 1 \end{pmatrix}$ make this a $\frac{1}{4}R_{2} \rightarrow R_{2} \qquad (1 \ 0 \ 3 \ 0 \ 1 \ 0) \\ 0 \ 1 \ -5/2 \ 1/4 \ -3/4 \ 0) \\ 0 \ 5 \ -10 \ 0 \ -2 \ 1/4 \\ make these 0$

The above is equivalent to

$$\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} (X)$$
A
One can find that $A^{-i} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & -4 \end{pmatrix}$
Multiply (X) on the left by A^{-i}
to get:
 $\begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & -4 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & -4 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$
A⁻¹
A⁻¹
A⁻¹
A⁻¹
A⁻¹
A⁻¹
A⁻¹
So we get

 $\begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{pmatrix} \equiv \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & -4 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$ (pick up un Weds...)