

We want to define + and . on Un. What if We just define it as: a+b = a+b $\overline{a} \cdot h = ab$ Is this well-defined? Ex: n=4, $Z_{4} = \overline{2} \overline{0}, \overline{1}, \overline{2}, \overline{3}$ 1+3=1+3=4=0 (mod 4))cqual 1 [equal 5 + 7 = 5 + 7 = 12 = 0 $12 \equiv 0 \pmod{4}$

Thm: (+ and · are well-defined on Z_n Let neZ, n>, Z. with Given a, b, c, d E Z a=c and b=dthen a+b=c+d (a+b=c+d)

 $ab = cd + \overline{a \cdot b} = \overline{c \cdot d}$

prouf:

Since $\overline{a} = \overline{c}$ we know $a \equiv c \pmod{n}$ Since $\overline{b} = \overline{d}$ we know $b \equiv d(\mod{n})$ Previously we saw this gives $(a+b) \equiv (c+d) \pmod{n}$

and

$$ab \equiv cd (mod n).$$

Thus,
 $\overline{a+b} = c+d$
 and
 $\overline{ab} = cd$
 $\overline{Ex}:$
 $\overline{Z}_{7} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$
 $(\overline{3}+\overline{5})\cdot\overline{6} = \overline{3+5}\cdot\overline{6}$
 $= \overline{8}\cdot\overline{6}$
 $= \overline{7}\cdot\overline{6} = \overline{6}$

 $\overline{1000} = \overline{6}$

Theorem: Let
$$n \in \mathbb{Z}, n \ge 2$$
.
Let $a,b,c \in \mathbb{Z}$.
In $\mathbb{Z}n$ we have:
() $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ commutative
(2) $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$ commutative
(3) $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$ associative
(4) $\overline{a} \cdot (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$ associative
(5) $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$ distributive
(6) $(\overline{b} + \overline{c}) = \overline{b} \cdot \overline{a} + \overline{c} \cdot \overline{a}$ distributive
(7) $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{b} \cdot \overline{a} + \overline{c} \cdot \overline{a}$ distributive

prove (5). We have

$$\overline{\alpha} \cdot (\overline{b} + \overline{c}) = \overline{\alpha} \cdot (\overline{b} + \overline{c})$$

$$\frac{1}{def \ of + in \ Z_n}$$

$$= \overline{\alpha} \cdot (\overline{b} + \overline{c})$$

$$\frac{1}{def \ of + \overline{c}}$$

$$\frac{1}{def \ of + \overline{a} \cdot \overline{c}}$$

$$\frac{1}{def \ of + \overline{a} \cdot \overline{c}}$$

$$\frac{1}{def \ of - \overline{c}}$$

$$\frac{E \times :}{D} = \{ \sum_{z=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

X is odd iff
$$x \equiv 1 \pmod{4}$$

or $x \equiv 3 \pmod{4}$

Side note (Dirichlet's theorem)
If
$$gcd(a,n)=1$$
, there
 $exist an infinite # of primes$
that satisfy $p \equiv a \pmod{n}$
 $p = a \pmod{n}$

[Hwz]
$$a,b \neq 0$$

(10) If $a|c,b|c, gcd(a,b)=l,$
then $ab|c.$

Pf: Since a c we know C=ak where kEZ. Since ble we know blak. Since black and gcd(4,6)=1 We know b/k. Thus, k=bl where leZ, $S_{0}, C = ak = abl.$ Thus, ablc.

Method 2:

Since alc we get c=ak, kel Since blc we get c=bl,leZ. Since gcd(u,b)=1 we get ax+by=1 where x,yEZ. Multiply by c to get cax + cby = c50, (bl)ax + (ak)by = cThen, ab[lx+ky] = cSu, able.

HW Z (II) If gcd(a,b) = 1, $x \mid a$, $x \mid bc$, then X (c

Claim:
$$gcd(x,b) = 1$$

Let $d = gcd(x,b)$.
Then, $d(x and d|b and d \ge 1$.
Since $d|x$ and $x|a$ we know $d|a, \begin{pmatrix} Hw \\ 1 \end{pmatrix}$
Su, $d|a$ and $d|b$.
But $gcd(a,b)=1$.
Su, $d=1$.
Since $x|bc$ and $gcd(x,b)=1$

We Know X C.

