

Let's do some calculations in Zn. Ex: Is 27 = 43 in Z_4 (Method 1'. 43 - 27 = 16 = 4.44(43-27)43=27 (mod 4) 43=27 in Ky Method 2: 477 $\frac{43=3}{27=3} = \frac{equal}{k}$

Ex: Consider $\mathbb{Z}_{7} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{9}, \bar{5}, \bar{6}\}$ Reduce the following in ZZ: $\frac{1}{4} + \frac{1}{-2} \cdot \frac{10}{10} + \frac{1}{421}$ = 64 + -200 + 42110 285 - 785 = 5

Topic 5- The multiplicative Structure of Zn

Def: Let ne Z, nz Z. We say that x and y are Let X, YEZn. multiplicative inverses in Zn $if \quad \overline{X} \cdot \overline{y} = 1$

EX: Consider $Z_{10} = \overline{\xi}_{0,\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{5},\overline{5},\overline{7},\overline{8},\overline{9})$ $\overline{0}, \overline{y} = \overline{0} \left(\begin{array}{c} y_{0} & c_{0} \\ never \\ get \end{array} \right) \quad \overline{0} \quad has \quad no \\ mult. \quad inverse, \end{array}$

$$1 \cdot 1 = 1 \leftarrow 1 \text{ is its own} \\ \text{mult. inverse} \\ \hline Does \overline{2} \text{ have a mult. inverse} \\ \hline \overline{2} \cdot \overline{0} = \overline{0} \\ \hline \overline{2} \cdot \overline{1} = \overline{2} \\ \hline \overline{2} \cdot \overline{2} = \overline{4} \\ \hline \overline{2} \cdot \overline{3} = \overline{6} \\ \hline \overline{2} \cdot \overline{4} = \overline{8} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{2} \cdot \overline{5} = \overline{10} = \overline{0} \\ \hline \overline{3} \cdot \overline{7} = \overline{18} = \overline{8} \\ \hline \overline{3} \cdot \overline{7} = \overline{18} = \overline{8} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \text{ace mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \hline \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \hline \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \hline \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \hline \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \hline \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ and } \overline{7} \\ \hline \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{21} = \overline{1} \quad \leftarrow \overline{3} \text{ are mult, inverses} \\ \hline \overline{3} \cdot \overline{7} = \overline{10} = \overline{1} \quad \hline \overline{1} \quad \overline{1} \quad \hline \overline{1} \quad \overline{1}$$

X	inverse in Z10?
0	no inverse
T	[
2	no inverse
3	7
4	no inverse
5	no inverse

6	no inverse
7	3
8	no inverse
G	5

We need the next lemma to make wr next theorem make Sense. LEMMA: Let neZ, n>2.

Let $a, b \in \mathbb{Z}$.

If $\alpha \equiv b \pmod{n}$, then gcd(a,n) = gcd(b,n)Equivalently, if a=b, then g(d(a,n) = g(d(b,n))Theorem: Let a, n ∈ Z, n ≥ 2. Then, a has a multiplicative inverse in Zn iff gcd(a,n]=1 Moreover, if a has a multiplicative inverse, then that inverse is unique.

EX: Does 3 have a multiplicative
inverse in
$$\mathbb{Z}_{26}$$
?
We have $gcd(3,26) = |$
Yes, 3 does have a mult. inverse.
It's 9 because $3\cdot9 = 27 = T$
 $26T27 - 26$
 $26T27 - 26$
Mult. inverse in \mathbb{Z}_{26}
because $gcd(2,26) = 2 \neq |$.

proof of theorem:
(=) Suppose a has a multiplicative
inverse in Zn
We must show that
$$gcd(a,n)=1$$

Since a has a mult. inverse
there exists $\overline{b} \in \mathbb{Z}n$
where $\overline{a} \cdot \overline{b} = \overline{1}$.
Let $d = gcd(a,n)$.
We want $d=1$.
Suppose $d>1$.
Let $c = \frac{n}{d} \cdot \frac{c \in \mathbb{Z}}{dln}$
Since $d>1$ and $d\leq n$ we know

 $\int \leq \frac{n}{2} < n$ $S_{v}, 1 \leq c < n.$ Thus, C≠O in Zn. But also $\overline{C} = \left(\frac{n}{d}\right) = \left(\frac{n}{d}\right) \cdot \overline{I} = \left(\frac{n}{d}\right) \cdot \overline{a} \cdot \overline{b}$ a.b=1 $=\left(\frac{nab}{d}\right)=n\left(\frac{a}{d}\right)b=\overline{n}\cdot\left(\frac{a}{d}\right)\cdot\overline{b}$ $= \overline{O} \cdot \left(\frac{a}{d}\right), \ \overline{b} = \overline{O} \qquad \begin{pmatrix} \frac{a}{d} \in \mathbb{Z} \\ \text{since } d|a \\ d= \operatorname{gcd}(a,n) \end{pmatrix}$

So if
$$d>1$$
 then $c=f$ would
satisfy $z=0$ and $z\neq 0$, which
is a contradiction.
So, $d=gcd(a,n)=1$.
 $(\langle \Rightarrow \rangle)$ Suppose $gcd(a,n)=1$
We must show a has a mult. inverse.
Since $gcd(a,n)=1$ we know
 $ax_0 + ny_0=1$ for some $x,y \in \mathbb{Z}$.
Then in \mathbb{Z}_n we get $ax_0 + ny_0 = T$
So, $ax_0 + ny_0 = T$.
 $x_0, ax_0 + ny_0 = T$.
 $x_0, ax_0 + ny_0 = T$.
Thus, $a \cdot x_0 = T$ in \mathbb{Z}_n .

So, a has a mult, inverse in Zn IFF] (Moreover part) 2 Suppose à has a multiplicative inverse in Zn. Let's show the inverse is unique. Suppose b, and bz are both multiplicative inverses of a. Then, $\overline{a} \cdot \overline{b}_1 = [$ and $\overline{a} \cdot \overline{b}_2 =]$. $b_0, \overline{a} \cdot b_1 = \overline{a} \cdot b_2$. Multiply by b2 to get b_2 · α · $b_1 = b_2$ · α · b_2

So,
$$\overline{a}, \overline{b_2}, \overline{b_1} = \overline{a}, \overline{b_2}, \overline{b_2}$$

Then, $\overline{1}, \overline{b_1} = \overline{1}, \overline{b_2}$
So, $\overline{b_1} = \overline{b_2}$
The inverse is unique!
Side commentary from class question
In \mathbb{Z}_{10} suppose you have
 $\overline{z} \, \overline{x} = \overline{z} \, \overline{y}$.
Then, $\overline{x} = \overline{0}, \overline{y} = \overline{5}$ solve this
but $\overline{x} \neq \overline{y}$.
Be careful, can't divide off \overline{z}
to get $\overline{x} = \overline{y}$. Not true

What about
$$3\overline{x} = 3\overline{9}$$
 in \mathbb{Z}_{10} ?
Multiply by $\overline{7}$ to get
 $\overline{7} \cdot 3\overline{x} = \overline{7} \cdot 3\overline{9}$
So, $\overline{21}\overline{x} = \overline{21}\overline{9}$
Then, $\overline{x} = \overline{9}$ $\overline{21} = \overline{1}$
 $\overline{10}\overline{\mathbb{Z}_{10}}$