

(Topic 5 continued ...)

Notation: If a EZn has a multiplicative inverse, then it's unique inverse will be denoted by a.

Def: Let nEZ, n>2.

Fine $Z_n = \{ \overline{a} \in \mathbb{Z}_n \mid \overline{a} \text{ has } a \}$ $multiplicative \}$ inverse Define theorem = ZaeZn | gcd(a,n)=1}

Ex: Let calculate
$$\mathbb{Z}_{10}^{\times}$$

We have
 $\mathbb{Z}_{10} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}\}$

$$Z_{10} = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$$

$$\overline{1} = \overline{1} \quad be cause \quad \overline{1} \cdot \overline{1} = \overline{1}$$

$$\overline{3}' = \overline{7} \quad be cause \quad \overline{3} \cdot \overline{7} = \overline{21} = \overline{1}$$

7=3 because because g.g=81=1 MATH 4550/4560 Zn is a group under t under Zn is a group is a ring (t, .) Z

TEST 1

$$5C$$
 $a,b70$, $x=gcd(a,b)$
 $y=gcd(a,a+b)$
Prove: $x \leq y$

proof: Since
$$x = gcd(a,b)$$

We get $x|a$ and $x|b$.
So, $a = xl$, $b = xm$ where $m, l \in \mathbb{Z}$.
Thus, $a+b = x(l+m)$
So, $x|(a+b)$.
Thus, $x|a$ and $x|(a+b)$.
So, x is a common divisor
of a and $a+b$.
But $y = gcd(a, a+b)$.
So, $x \leq y$

5D
$$a,b,c > 0$$

If $g(d(a,b)=|$ and $c|a$
then $g(d(b,c)=|$.
Proof: Since $g(d(a,b)=|$
We get $a \times + by = |$ where
 $x,y \in \mathbb{Z}$
Since $c|a$ we get $a=ck$ where
 $k \in \mathbb{Z}$
Thus, $c(kx)+b(y)=|$.
Since $c \times _0 + by_o = |$ has an
integer solution we get
 $g(c,b) = |$
So, $g(c(c,b)=|$

EX: Lets calculate Zis and every elements multiplicative inverse. $\mathbb{Z}_{15} = \{\overline{5}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, ..., \overline{13}, \overline{14}\}$ Gcd(8, 15) = 1 $9cd(0,15) = 15 \neq 1$ gcd (9,15)=3≠1 9cd(1,15) = 19cd(10,15]=5 g(d(2,15) = 1)9cd(11,15) = 1 $9cd(3,15) = 3 \neq 1$ $9cd(12,15)=3\neq 1$ 9cd(4,15) = 19cd(13,151=1) $gcd(5,15) = 5 \neq 1$ gcd (14, 151=1) g(d(6,15)=3=1)9cd(7,15) = 1 $Z_{15} = \{\overline{1}, \overline{2}, \overline{4}, \overline{7}, \overline{8}, \overline{11}, \overline{13}, \overline{14}\}$

$$\frac{\text{multiples of 15:}}{15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, ...}$$
For 14:

$$\overline{\text{For 14:}}$$

$$\overline{\text{For 14:}}$$

$$\overline{\text{For 14:}}$$

$$\overline{\text{Fact: If } p \text{ is } \text{prime, then}}$$

$$\overline{\mathbb{Z}_{p} = \underbrace{\underbrace{z}_{0}, \overline{1}, \overline{z}_{1}, ..., p-1}{\mathbb{Z}_{p}^{x} = \underbrace{z}_{1}, \underbrace{z}_{1}, ..., p-1}$$

$$(\text{because } \gcd(a, p) = 1 \text{ if } 1 \le a \le p-1)$$

Ex: $\mathbb{Z}_{7} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$ $\mathbb{Z}_{4}^{\times} = \{ \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6} \}$ because 7 is prime

MATH 4560 Ur 5401 Zp is called a field when p is prime

Theorem: Let
$$n \in \mathbb{Z}$$
 with $n \ge 2$.
Then, \mathbb{Z}_{n}^{\times} is closed under
Multiplication.
That is, if $\overline{a}, \overline{b} \in \mathbb{Z}_{n}^{\times}$,
then $\overline{a} \cdot \overline{b} \in \mathbb{Z}_{n}^{\times}$.
Proof: Suppose $\overline{a}, \overline{b} \in \mathbb{Z}_{n}^{\times}$.
Then \overline{a}^{T} and \overline{b}^{T} exist.
Let's show $\overline{a} \cdot \overline{b}$ has a
Multiplicative inverse.
We have
 $(\overline{a}, \overline{b}) \cdot (\overline{b} \cdot \overline{a}^{T})$
 $= \overline{a} \cdot \overline{b} \cdot \overline{b} \cdot \overline{a}^{T} = \overline{a} \cdot \overline{1} \cdot \overline{a}^{T}$
 $= \overline{a} \cdot \overline{a} \cdot \overline{a}^{T} = \overline{1}$

So,
$$(\overline{a},\overline{b})^{-1} = \overline{b} \cdot \overline{a}^{-1}$$

Thus, $\overline{a} \cdot \overline{b}$ has a multiplicative inverse.
And so, $\overline{a} \cdot \overline{b} \in \mathbb{Z}_{n}^{\times}$
Theorem: Let p be prime.
Then the only elements
of Z_{p}^{\times} that are their
Own inverse are T and $\overline{P-1} = -\overline{1}$.
Proof:
We have $T \cdot \overline{T} = T$ and
 $\overline{-1} \cdot \overline{-1} = \overline{T}$. So, T and $\overline{P-1} = -\overline{1}$
are their own inverse.

Why are these the only oner?
Suppose
$$\overline{x} \in \mathbb{Z}_{p}^{\times}$$
 is it's own inverse.
Then, $\overline{X} \cdot \overline{x} = \overline{1}$.
So, $\overline{X^{2}} = \overline{1}$.
Thur, $\overline{X}^{2} \equiv | \pmod{p}$,
Su, $p | (\overline{X^{2}-1})$.
Su, $p | (\overline{X+1})(\overline{x-1})$.
Since p is prime we get
 $p|(\overline{X+1}) \text{ or } p|(\overline{X-1})$
 $p|_{a}$
 $p|_{b}$
Suppose $\overline{X} \equiv -1 \pmod{p}$ or $\overline{X} \equiv 1 \pmod{p}$.

So either

$$\overline{X} = -\overline{1}$$
 or $\overline{X} = \overline{1}$.
So, $\overline{1}$ and $\overline{p-1} = -\overline{1}$
are the only elements
with their own inverse.
 $\overline{1}$