Math 4460 4/16/25

We will now find a formula for all the primitive, Positive, Pythagorean triples. Consider (X, y, Z) Where X, Y, ZEZ, Posifive X > 0, Y > 0, Z > 0, Cprimitive $gcd(x, y, z) = 1, \leftarrow$ Pythngoran triple and $x^2 + y^2 = z^2 \in$

Let's show x and y can't both be even. Suppose x, y are both even.

Then in Zz= {o,i} we get $\overline{X} = \overline{0}, \overline{Y} = \overline{0}.$ 50, $z^{2} = z^{2} + y^{2} = 0 + 0 = 0$ IN ZZ. Then Z=0. Ju, Z is even. But then Z|x, Zly, Z|Z making g(d(x,y,z) > 2contradicting gcd(x,y,Z)=1. Thus, x and y cannot both be even.

 X and y cannot both be add. Why? Suppose x and y are both odd. Let's use $\mathbb{Z}_{4} = \{\overline{2}, \overline{1}, \overline{2}, \overline{3}\}$. Recall if a EZy with a odd then $\overline{\alpha} = T$ or $\overline{\alpha} = 3$. This gives $\overline{\alpha}^2 = \overline{1}^2 = \overline{1}$ or $\bar{\alpha}^2 = \bar{\beta}^2 = \bar{\eta} = \bar{1}$. Thus, in Zy we get $\overline{X}^2 = \overline{1}$ and $\overline{y}^2 = \overline{1}$ Then in Zy we get $z^{2} = x + y^{2} = 1 + 1 = 2$ By the following table

there is no
$$\Xi$$
 with $\Xi^2 = \Xi$
giving a contradiction.
 $\overline{\Xi} \quad \overline{\Xi^2}$
 $\overline{0} \quad \overline{0}$
 $\overline{1} \quad \overline{1}$
 $\overline{\Xi} \quad \overline{\Xi^2}$
 $\overline{3} \quad \overline{9} = \overline{1}$
Thus x and y are not
both odd.
Therefore either
x is odd and y is even
or
x is even and y is odd.

Since
$$x^2 + y^2 = z^2$$
 is symmetric
in x and y we can
just do one of the above cases.
Let's assume x is odd
and y is even.
Then, in $\mathbb{Z}_2 = \{\overline{o}, \overline{1}\}$
we get $\overline{x} = \overline{1}$ and $\overline{y} = \overline{0}$.
So, $\overline{z}^2 = \overline{x}^2 + \overline{y}^2 = \overline{1}^2 + \overline{0}^2 = \overline{1}$
Thus, in \mathbb{Z}_2 we get $\overline{z} = \overline{1}$.
Then, \overline{z} is odd.
Since x is odd and z is odd
we know $\overline{z} - \overline{x}$ is even

and
$$z + x$$
 is even.
Note that
 $y^2 = z^2 - x^2$
 $y^2 = (z + x)(z - x)$
So, dividing by Y gives
 $\left(\frac{y}{z}\right)^2 = \left(\frac{z + x}{z}\right)\left(\frac{z - x}{z}\right)$ (*)
Note $\frac{y}{z}, \frac{z + x}{z}, \frac{z - x}{z} \in \mathbb{Z}$
because $y, z + x, z - x$ are even.
Let's show that
 $gcd\left(\frac{z + x}{z}, \frac{z - x}{z}\right) = 1$.
Any common divisor of

$$\frac{Z+X}{Z} \text{ and } \frac{Z-X}{Z} \text{ must}$$

divide their sum
 $\left(\frac{Z+X}{Z}\right) + \left(\frac{Z-X}{Z}\right) = Z$
and their difference
 $\left(\frac{Z+X}{Z}\right) - \left(\frac{Z-X}{Z}\right) = X$
So we just need to
show gcd $(X,Z) = 1$.
HW 3-5(a)
gcd $(X,Z) > 1$ iff there
exists a prime p
where plx and plz
Suppose gcd $(X,Z) > 1$,
Then there exists a

prime p where plx and plz. Then, plx2 and plz2. $S_0, p \mid (Z^2 - X^2).$ So, $p | y^2$. Then p | y. Then p | y. Since plx, ply, plz we get gld(x,y,Z)>p contradicting gcd(x,y,Z)=1, hus, gcd(X,Z) = 1.From above this implies $gcd(\frac{z+x}{z}, \frac{z-x}{z}) = l$.

Recall this theorem: (topic 3)
IF A, B, C are positive
integers and
$$gcd(A, B) = 1$$

and $C^{n} = AB$, then there
exists Positive integers
R, S where $A = R^{n}$ and $B = S^{n}$
Our situation from (*) is
 $\left(\frac{y}{z}\right)^{2} = \left(\frac{z+x}{z}\right)\left(\frac{z-x}{z}\right) \neq \left(C^{2} = AB$
with
 $gcd\left(\frac{z+x}{z}, \frac{z-x}{z}\right) = 1 \neq \left(gcd(A, B) = 1\right)$
Hence
 $\frac{z+x}{z} = r^{2}$ and $\frac{z-x}{z} = s^{2}$
where $r, s > 0$ are integers

and
$$gcd(r,s) = 1$$

 $gcd(r^{2},s^{2}) = gcd(\frac{z+x}{2}, \frac{z-x}{2}) = 1$
So, $\left(\frac{y}{2}\right)^{2} = \left(\frac{z+x}{2}\right)\left(\frac{z-x}{2}\right) = r^{2}s^{2}$
Thus, $\frac{y}{2} = rs$ and so
 $y = 2rs$
Note that $r^{2} = \frac{z+x}{2} > \frac{z-x}{2} = s^{2}$
So, $r > 5 > 0$
And $\left(\frac{z+x}{2}\right) - \left(\frac{z-x}{2}\right) = r^{2} - s^{2}$
 $z = \left(\frac{z+x}{2}\right) + \left(\frac{z-x}{2}\right) = r^{2} + s^{2}$

Since
$$z$$
 is odd and
 $z = r^2 + s^2$
by this table T $z = r^2 + s^2$
r and s
have opposite
parity
that is, one
is even and
one is odd.

Theorem : If
$$(X,Y,Z)$$
 is
a primitive, positive Pythagorean
triple, with y even (and X odd),
then
 $X = r^2 - s^2$
 $y = Zrs$

 $Z = r^2 + s^2$

Where r>s>0 are integers of upposite parity with ycd(r,s)=1

S	r	$\chi = r^2 - s^2$	y=Zrs	$z = \chi^2 + s^2$
	2	3	Ч	5
1	4	15	8	17
	6	35	12	37
Z	3	5	12	13
2	5	ZI	ZO	29

3	Ч	7	24	25
3	8	55	48	73
0	8	•	, , ,	0 [*