Math 4460 4/23/25

Hw 3

$$Z(b)$$
 (modified)
Prove that $\sqrt{\frac{2}{3}}$ is irrational.
Proof: Suppose $\sqrt{\frac{2}{3}}$ is rational.
Then, $\sqrt{\frac{2}{3}} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$,
 $b \neq 0$, and $gcd(a, b) = 1$.
So, $\frac{2}{3} = \frac{a^2}{b^2}$.
Then, $Zb^2 = 3a^2$.
Then, $Zb^2 = 3a^2$.
Then, $Z 3a^2$.
Proceeding of $2b^2 = 3a^$

So either 2/3 or 2/92. Since 2/3 we get 2/a. Then, Z is prime and 2 a.a. S_{0}, Z_{α} Thus, a = 2k where $k \in \mathbb{Z}$. Plug this back into 2b=3a² to get $2b^{2} = 3(2k)^{2}$ $50, 2b^2 = 3.2.2.k$ Then $b^2 = 3 \cdot 2 \cdot k^2$. So, 216

Since 2 is prime and 2/6.6 we have that 2/b. Hence 21a and 21b. But then $gcd(a,b) \ge 2$ contradicting gid(a,b)=1. Thus, 13 is irrational.

Then x = ZL where $L \in \mathbb{Z}$. Since 4/X we must have So that lis odd. 211 Then (21)y = 4k×y So, Ly=Zk Then, Zly. Since 2 is prime either 2/1 ur 2/4 But zil and zig. (un tradiction. Thus, 2 y.

Method 2. Suppose 4/Xy and 4/X. $d = gcd(4, y), \in \begin{pmatrix} d = 1, 2, \\ or y \end{pmatrix}$ Consider If d=1,then 4|xy and gcd(4,y)=|, Su, by a theorem from class, 4/X. But 4XX, Thus, d+1. d = 4 $S_0, d = Z_0$ 0049. Su either 214 In either case 2 y.

HW 4 13 Prove that $15x^2 - 7y^2 = 1$ 13 has no integer solutions. proof: Suppose there exist $X, Y \in \mathbb{Z}$ where $15x^2 - 7y^2 = 1$. Then in Z, we get $15 x^{2} + -7 y^{2} = 1$ $50, COinZ_3 LZ inZ_3$ $\frac{\overline{y}}{\overline{z}} \frac{\overline{z}\overline{y}^{z}}{\overline{z}}$ \overline{z} \overline{z} $\overline{z}\overline{y}^2 = \overline{1}$ in \mathbb{Z}_3 . But this impossible by this table

Contradiction.
There are no
$$x, y \in \mathbb{Z}$$
 where
 $15x^2 - 7y^2 = 1$
HW 4
(a) Let $p, x, y \in \mathbb{Z}$ where
 p is prime. Suppose
 $\overline{xy} = \overline{0}$ in $\mathbb{Z}p$. Prove
that $\overline{x} = \overline{0}$ or $\overline{y} = \overline{0}$ in $\mathbb{Z}p$.
Proof:
Suppose $\overline{xy} = \overline{0}$ in $\mathbb{Z}p$.
Then, $xy \equiv 0 \pmod{p}$
Then, $p \mid (xy - 0)$

Thus,
$$p \mid xy$$
.
Since p is prime, $p \mid x$ or $p \mid y$.
Then, $x \equiv 0 \pmod{p}$ or $y \equiv 0 \pmod{p}$.
 $p \mid (x - 0)$ $p \mid (y - 0)$
So, $\overline{x} = \overline{0}$ or $\overline{y} = \overline{0}$ in \mathbb{Z}_{p} .
 $\overline{9(b)}$ Give an example in \mathbb{Z}_{n}
where $\overline{x} \overline{y} = \overline{0}$ but $\overline{x} \neq \overline{0}$
 $a_{nd} \overline{y} \neq \overline{0}$.
In \mathbb{Z}_{14} , $\overline{2 \cdot 7} = \overline{14} = \overline{0}$
but $\overline{z} \neq \overline{0}$ and $\overline{7} \neq \overline{0}$.