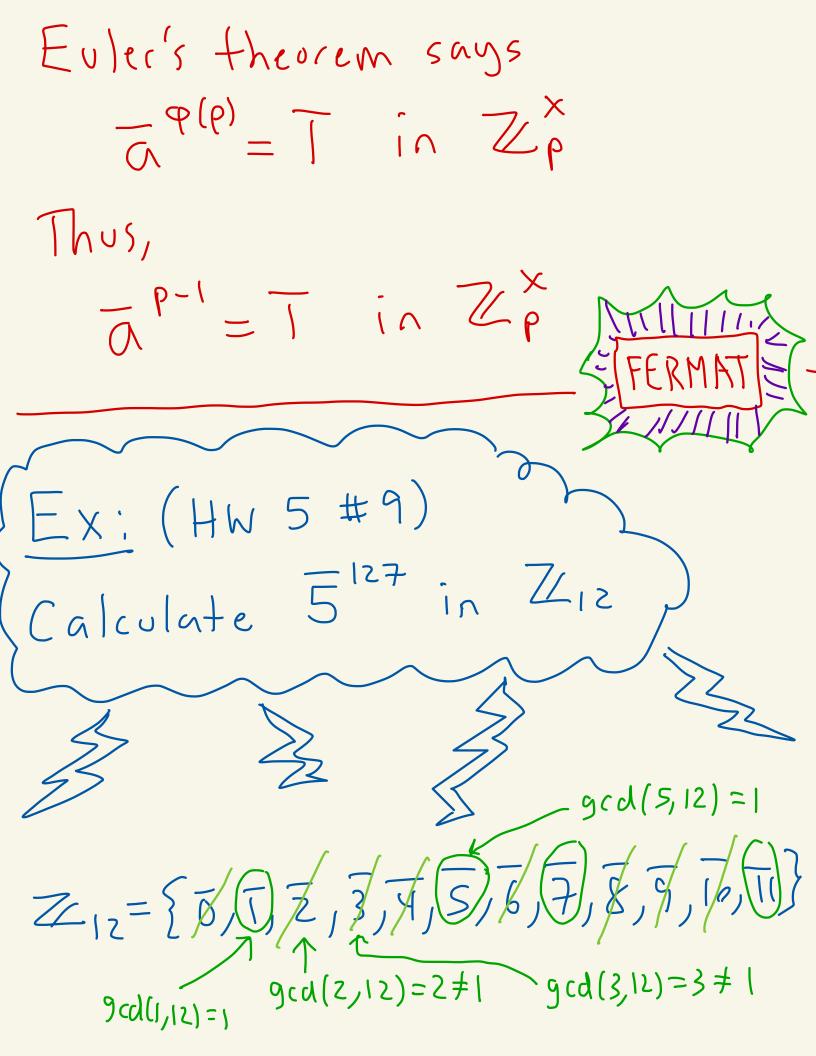
Math 4460 4/9/25

(Topic 5 continued ...)

termat's Theorem If p is a prime and aEZp then ap-1=T in Zp Reformulation: aEZ If gcd(a,p)=1, then $a^{p-1}\equiv 1 \pmod{p}$ proof: Let a EZp Since P is prime, then $\mathbb{Z}_{p}^{\times} = \{\overline{1}, \overline{2}, \overline{3}, \dots, \overline{p-1}\}$ only 0 duesn't have an inverse So, $\varphi(p) = |Z_p^{\times}| = p - 1$



 $\mathbb{Z}_{12}^{\times} = \{\overline{1}, \overline{5}, \overline{7}, \overline{1}\}$ Thus, $\overline{5} \in \mathbb{Z}_{12}^{\times}$ and $\varphi(12) = |\mathbb{Z}_{12}^{\times}| = 4$ Evler says: $5^4 = 1 + 5^{\varphi(n2)} = 1$ 127 = 31(4) + 3So, $5^{127} = 5^{31.4+3} = 5^{31.4} = 5^{3}$ $=(5^{4})^{3}, 5^{3}$ $\frac{2}{2}$ $-\frac{3}{5}$ $-\frac{3}{5}$ 10 5=112/125 $=5^{3}$ = 1255 Thus, $5^{127} = 5$ in \mathbb{Z}_{12} $5^{127} \equiv 5 \pmod{12}$ 0 (

Vef: Let nEZ, nZZ. We say that JEZn is a primitive root if every element XEZn is of the form $\overline{X} = \overline{g}^k$ where k is a positive integer.

4550 g is a primitive root means g is a generator for Zn under multiplication Zn is cyclic

Ex: $Z_{10}^{\times} = \{ \overline{1}, \overline{3}, \overline{7}, \overline{9} \}$ Is Ta primitive root? Posifive powers T=T only give T $T^2 = T$ $T^3 = T$ So T is not a primitive root Is 3 a primitive root? every element 3=3 of Zio is $3^{2} = 9$ a positive power of 3 $\overline{3}^{3} = \overline{27} = \overline{7}$ $z^{4} = \overline{81} = (T)$ Thus, 3 is a primitive root

Is 7 a primitive root? $\overline{7}' = (\overline{7})$ INC. $\overline{7}^2 = \overline{49} = \overline{9}$ $\vec{7}^3 = \vec{7} \cdot \vec{7} = \vec{9} \cdot \vec{7} = \vec{63} = \vec{3}$ all 9 E JZis $\overline{7}^{4} = \overline{7}^{3}, \overline{7} = \overline{3}, \overline{7} = \overline{21} = \overline{1}$ Thus, 7 is a primitive rout. coot ? Is J a primitive the powers $\overline{9} = \overline{9}$ vf g dont $\overline{g}^2 = \overline{81} = \overline{1}$ generate all the $\overline{9}^3 = \overline{9}^2 \cdot \overline{9} = \overline{1} \cdot \overline{9} = \overline{9}^3$ elements $\overline{G}^{Y} = \overline{G}^{3} \cdot \overline{G} = \widehat{G} \cdot \overline{G} = \overline{1}$ 0F $Z_{10}^{\times} = \{\overline{1}, \overline{3}, \overline{7}\}$ a primitive rost not 9 15

The primitive roots of
$$\mathbb{Z}_{10}^{\times} = \mathbb{Z}_{1}, \overline{3}, \overline{7}, \overline{7}, \overline{7}$$

are 3 and 7.

Ex:
$$\mathbb{Z}_8 = \{\overline{7}, \overline{3}, \overline{5}, \overline{7}\}$$

What are the primitive roots?

powers of	powers of =	powers of 5
T $T = T$ -2 T	$3^{1} = 3$ $3^{2} = 9 = 1$	5' = 5 $5^{2} = 25 = 0$
	$3^{3} = 3 \cdot 3^{2} = 3 \cdot 1 = 3$ $3^{4} = 3 \cdot 3 = 5 = 1$	
	¥	

Powers if
$$\overline{7}$$

 $\overline{7}^{1} = \overline{7}$
 $\overline{7}^{2} = \overline{49} = \overline{1}$
 $\overline{7}^{3} = \overline{7}^{2} \cdot \overline{7} = \overline{1} \cdot \overline{7} = \overline{7}$
 $\overline{7}^{4} = \overline{7} \cdot \overline{7} = \overline{49} = \overline{1}$
 $\overline{7}^{4} = \overline{7} \cdot \overline{7} = \overline{49} = \overline{1}$
 $\overline{7}^{4} = \overline{7} \cdot \overline{7} = \overline{49} = \overline{1}$
 $\overline{7}^{4} = \overline{7} \cdot \overline{7} = \overline{49} = \overline{1}$

Theorem: Let p be a prime.
Then, there exists a primitive
root of Zp.
Moreover, there are
$$p(p-1)$$
 primitive roots

Ex: $\mathbb{Z}_{s}^{\times} = \{T, \overline{Z}, \overline{3}, \overline{4}\}$ p=5 is prime Primitive roots: Z, 3 Not primitive root: T, Y $\varphi(p-1) = \varphi(s-1) = \varphi(y)$ (oots $= |Z_{4}^{\times}|$ = [27,3] = 2 4

Theorem: There exists
a primitive root in
$$\mathbb{Z}_{n}^{\times}$$

if and only if n is one
of the following forms:
 $n=2, n=4, n=p^{k}$, or $n=2p^{k}$
where p is an odd prime
 \mathbb{E}_{27}^{\times} have a
primitive root?
 $n=3^{3}=p^{3}$ where p is an
odd prime
So, \mathbb{Z}_{27}^{\times} has at least
one primitive root

Ex: $n = 12 = 2^{2} \cdot 3$ Not in the list Ziz has no primitive root