Math 446 - Homework # 3

1. Prove the following:

()

Gz’veg a, bxe Z with b # 0, there exist x,y € Z with ged(x,y) = 1
and 7= ;

Solution: Let d = ged(a,b). Let © = a/d and y = b/d. Then
from class, we know that ged(z,y) = 1. And we also have that
a/b=(a/d)/(b/d) = z/y.

If p is a prime and a is a positive integer and pla™, then p"|a™.
Solution: Suppose that p is a prime and p divides a” = a-a- - - a.
Recall that when a prime divides a product of integers then it
must divide at least one of the integers contained in the product.

Hence pla. Therefore, pk = a for some integer k. Hence, a" =
(pk)™ = p"k™. Therefore p™|a™.

/5 is irrational.

Solution: Suppose that ¥/5 is rational. Then /5 = a/b where
a,b € Z. We may always cancel common divisors in a fraction,
hence we may assume that ged(a,b) = 1.

Taking the fifth power of both sides of V/5 = a/b gives 5 = a°/b°.
Hence a® = 5b°. Therefore 5 divides the product a® = a-a-a-a-a.
Recall that when a prime divides a product of integers then it must
divide at least one of the integers contained in the product. Since
5 is prime we must have that 5 divides a. Therefore a = 5k where
k is an integer. Substituting this expression into a® = 5b° yields
5%k% = 5b°. Hence 5(5°k®) = b°. Therefore 5 divides b°. Since 5
is prime we must have that 5/b. But then 5 would be a common
divisor of @ and b and hence ged(a,b) > 5. This contradicts our
assumption that ged(a,b) = 1.

Therefore +/5 is irrational.

If p is a prime, then \/p is irrational.

Solution: Suppose that /p is rational. Then \/p = a/b where
a,b € Z. We may always cancel common divisors in a fraction,
hence we may assume that ged(a,b) = 1.

Squaring both sides of \/p = a/b and then multiplying through by
b* gives us that pb> = a®. Hence pla®. Recall that when a prime



divides a product of integers then it must divide at least one of
the integers in the product. Since p is a prime, p must divide a.
Therefore, a = pk for some integer k. Substituting this back into
pb? = a? gives us that pb?> = p?k?%. Dividing by p gives us b* = pk?.
Thus p|b?. Again, since p is a prime, we must have that p|b.
From the above arguments we see that p|a and p|b. Hence ged(a,b) >
p. However, we also have that ged(a,b) = 1. This gives us a con-
tradiction.

Suppose that a,b,c are integers with a # 0 and b # 0. If alc, blc,
and ged(a, b) = 1, then ab|c.

Solution 1: Since a|c and b|c we have that ¢ = at and ¢ = br
where r,t € Z. Therefore at = br. Thus a|br. Since ged(a,b) =1
and a|br we have that a|r. Thus r = ak where k € Z. Thus,
¢ = br = bak = (ab)k. Hence abc.

Solution 2: Since a|c and b|c we have that ¢ = at and ¢ = br
where 7t € Z. Since ged(a,b) = 1, there exist integers z and y
with ax + by = 1. Multiplying this by ¢ we get that acx + bcy = c.
Now substitute ¢ = br into the first term and ¢ = at into the
second term to get that ¢ = acx+becy = abrz+baty = (ab)(ra+ty).
Therefore abc.

Prove that \/6 is irrational.

Solution 1: Suppose that v/6 was rational. We show that this
leads to a contradiction. We may write v/6 = 2/y where = and
y are integers with y # 0 and ged(x,y) = 1. Squaring both
sides of the equation we get 6 = x?/y* and then 6y? = x?. Thus
2(3y?) = 2. So 2|z?. Since 2 is prime and 2|z - ¥ we must have
that 2|x. Thus z = 2k where k is an integer. Plugging this back
into 6y* = x? we get that 6y? = (2k)*> = 4k*. Dividing by 2 gives
3y? = 2k*. Thus 2|3y?. Since 2 is prime that means that 2|3 or
2|y?. Since 2 does not divide 3 we must have that 2|y%. Then again
since 2 is prime we must have that 2|y. Therefore we have found
that 2|z and 2|y. This contradicts the fact that ged(x,y) = 1.
Therefore v/6 must be irrational.

Solution 2: Suppose that /6 was rational. We show that this
leads to a contradiction. We may write v/6 = x/y where 2 and y
are integers with y # 0 and ged(z,y) = 1. Squaring this equation



and cross-multiplying we get that 6y*> = 2% or 2 -3 - y? = 2%

Therefore, 2 divides 22 = - 2. Since 2 is prime we must have that
2 divides . Similarly, 3 divides 2? = z-z. And since 3 is prime we
must have that 3 divides z. Since 2|z and 3|z and ged(2,3) = 1,
by the first part of this problem, we have that 6 = 2 - 3 must
divide z. So x = 6u where u is a non-zero integer. Subbing this
into 6y? = 22 gives us that 6y? = 62u?. Thus y? = 6u®. Following
the same reasoning as above, this forces that 6 must divide y.
Therefore, 6 is a common divisor of x and y which contradicts the
fact that ged(z,y) = 1.

3. Prove that log,,(2) is an irrational number.

4.

Solution: Suppose that log,,(2) was rational. Then log,,(2) = a/b
where a and b are positive integers (we may assume they are positive
since log,,(2) is positive). In particular, b # 0. We have that 109/° = 2
by the definition of the logarithm. Hence 10 = 2°. Therefore 295 = 2°.
Since prime factorizations are unique (by the fundamental theorem of
arithmetic) we must have that a = 0 since there are no factors of 5
on the right-hand side of 2?5 = 2°. Hence 2°5° = 2°. This gives
2> = 1. But this implies that b = 0 which is not true. Hence log,,(2) is
irrational.

(a)

Let a and b be positive integers. Prove that ged(a,b) > 1 if and
only if there is a prime p satisfying pla and plb.

Solution:

Suppose that d = ged(a,b) > 1. Since d is positive integer with
d > 2, by the fundamental theorem of arithmetic, there is at least
one prime p with p|d. Since p|d and d|a we must have that p|a.
Since p|d and d|b we must have that p|b. Hence p|a and pl|b.

Conversely suppose that there is a prime p with p|a and p|b. Then
ged(a,b) > p > 1.

Let a, b, and n be positive integers. Prove that if ged(a,b) > 1 if
and only if ged(a™, b™) > 1.

Solution: Suppose that d = ged(a,b) > 1. Soa = dk and b = dm

where k£ and m are integers. Thus a" = d"k™ and b" = d"m”". So
d|a™ and d|b". Hence ged(a”,0™) > d > 1.



Conversely, suppose that ged(a”, ") > 1. Then by exercise (4a),
there exists a prime ¢ with gla™ and ¢|b". Since ¢ divides the
product a" = a-a---a and ¢ is prime, we must have that ¢a.
Since g divides the product 0" =b-b---b and ¢ is prime, we must
have that ¢|b. Hence ¢la and ¢|b. Thus ged(a,b) > g > 1.

5. Suppose that x and y are positive integers where 4|zy but 41 x. Prove
that 2|y.

Solution: Since 4|zy we have that 4s = zy for some integer s. Hence
2(2s) = zy. Thus 2|zy. Since 2 is prime we have that either 2|x or 2]y.
We break this into cases.

case 1: If 2|y then we are done.

case 2: Suppose that 2|z. Then x = 2k where k is some integer. Since
4 t = we must have that k is odd. Hence 2 t k. Substituting = = 2k
into 4s = xy gives 4s = 2ky. Hence 2s = ky. Therefore 2|ky. Since 2
is prime we must have either 2|k or 2|y. But 2 1 k. Therefore, 2|y.

6. Let a and b be positive integers. Suppose that 5 occurs in the prime
factorization of a exactly four times and 5 occurs in the prime factor-
ization of b exactly two times. How many times does 5 occur in the
prime factorization of a + b?

Solution: By assumption a = 5% and b = 5% where s and t are
positive integers and 51 s and 5 ¢t. Note that a + b = 5%(25s + t). We
want to show that 5 does not divide 25s+¢. If 5 did divide 255+t then
5k = 25s + t for some integer k. This would imply that 5(k — 5s) = t,
which gives that 5 divides . But we know that is not true.

Therefore a + b = 5%(25s + t) where 5 does not divide 25s + t. Hence
5 occurs twice in the prime factorization of a + b.

7. We say that an integer n > 2 is a perfect square if n = m? for some
integer m > 2. Prove that n is a perfect square if and only if the prime
factorization of n = plflpl;2 - pFr has even exponents (that is, all the k;
are even,).

Solution: Suppose that n is a perfect square. Therefore n = m? where

m is a positive integer. By the fundamental theorem of arithmetic

m = qi'q5’ - - - ¢¢" where ¢; are primes and e; are positive integers. We



see that

e1 es 2e1 2es 2er

n=m’=(¢{'¢s )’ ="6B" ¢

Therefore every prime in the prime factorization of n is raised to an
even exponent.

Conversely suppose that every prime in the prime factorization of n

is raised to an even exponent. Then n = p%kl png .- p2kr where p; are
primes and k; are positive integers. Let m = p]fl pé” .- pkr. Then m is

an integer and n = m?. Hence n is a perfect square.

. A positive integer n > 2 s called squarefree if it is not divisible by
any perfect square. For example, 12 is not squarefree because 4 = 22
is a perfect square and 4|12. However, 10 is squarefree. (Recall the
definition of perfect square from problem 7.

(a) Prove that a positive integer n > 2 is squarefree if and only if n
can be written as the product of distinct primes.
Solution: Suppose that n is squarefree. Let n = pi'p5* - - - pS be
the prime factorization of n where the p; are distinct. Here we
have that the e; are positive integers. Suppose that e; > 2. Then
n = p}(ps*~*p$ - - - p°). This would imply that n was divisible by
the perfect square p?. This can’t happen since n is squarefree.
Hence e; = 1. A similar argument shows that e; = 1 for all .

Thus n = p1py - - - ps is the product of distinct primes.

Conversely suppose that n is the product of distinct primes. By
way of contradiction, suppose that n was divisible by a perfect
square. Then n = m2k where m > 2 and k > 1 are integers. Let
m = q{l q{Q . -qtf * be the prime factorization of m where the ¢; are
primes and the f; are positive integers. Then

2f1 2 2
n = mZk, — q1f1q2f2 . ‘qtftkf-

This contradicts the fact that n is the product of distinct primes
since, for example, ¢; appears more than once in the factorization
for n. Therefore n is not divisible by any perfect squares.

(b) Express the number 32,955,000 = 23 - 3 -5 - 133 as the product of
a squarefree number and a perfect square.



Solution:

32,955,000 = 2%.3.5%.13%
= 22.54.132.2.3.13
= (2-5%-13)*-(2-3-13)
= 650%-78.

Hence 32,955,000 is the product of the perfect square 650? and
the squarefree number 78 =2 -3 - 13.

Let n > 2 be a positive integer. Then either n is squarefree, or n
18 a perfect square, or n is the product of a squarefree number and
a perfect square.

Solution: Let n > 2 be a positive integer. We factor n into
primes using the fundamental theorem of arithmetic and break
the proof into cases.

case 1: Suppose that n’s prime factorization contains primes to
even powers and primes to odd powers. Then
2 2 0 20141 2fo+1 2fp+1
n=pi g g
where the p; are the primes in the factorization of n that are raised

to an even power and the ¢; are the primes in the factorization of
n that are raised to an odd power. We then have that

2
n = <pi’1 ~p§2---pZ“Qfch§2---q§b> Qg2 Qe

If all the e; and f; are zero then n is a squarefree number. Other-
wise, n is the product of a perfect square and a squarefree number.

case 2: Suppose that n’s prime factorization only contains primes
to odd powers. Then

2f14+1 2fo+1
n— qlfl q2f2 .

2fp+1
. qbfb

where the ¢; are primes. We then have that

2
n = (q{1q§2---qu> GGG



If not all the f; are zero then n is the product of the perfect square
and the squarefree number. If all the f; are zero then

n=dq-q-""q

and so n is a squarefree integer.
case 3: Suppose that n’s prime factorization only contains primes
to even powers. Then there are primes p; where

2e1 2eq

e e eq\2
n=p: .p§2...pa = (p§* - ps2 - ple)?.
Here n is a perfect square.

9. Suppose that z,y, z € Z such that z > 0,y > 0, z > 0, ged(z,y,2) = 1,
and 22 4+ y? = z2. Prove that ged(z, z) = 1.

Solution: Suppose that x,y,z € Z such that x > 0, y > 0, z > 0,
ged(z,y,2) = 1, and 2? + y? = 22. We now show that ged(z,2) = 1.
We do this by showing that the negation of this cannot happen.

Suppose that ged(x, z) > 1. Then, by exercise 4a, there exists a prime
p such that p|z and p|z. Then x = pk and z = pm for some integers k
and m. Then (pk)? +1y? = (pm)%. Hence p[pm? — pk?] = y?. Thus p|y>.
Recall that if a prime divides a product of two integers then the prime
must divide one of the integers. Therefore p|y. But then p|z, ply, and
p|z, which implies that ged(x,y, z) > p. This contradicts the fact that
ged(x,y, z) = 1. Therefore, cannot have that ged(z, z) > 1.



