Math 4550 11/12/25

(HW 4)

(4) $\varphi: \mathbb{Z} \to \mathbb{Z}$ is a homomorphism with $\varphi(1) = 5$.

Find $\varphi(4), \varphi(-1), \varphi(-3)$

$$\varphi(4) = \varphi(1+1+1+1)
= \varphi(1) + \varphi(1) + \varphi(1) + \varphi(1)
= 5+5+5
= 20$$

 φ is a homomorphism: $\varphi(x') = [\varphi(x)]^{-1}$

$$\varphi(-1) = [\varphi(1)]^{-1} = [5]^{-1} = -5$$
 $\varphi(-1) = -\varphi(1) = -5$

$$\varphi(-3) = \varphi((-1) + (-1) + (-1))$$

$$= \varphi(-1) + \varphi(-1) + \varphi(-1)$$

$$= -5 - 5 - 5$$

$$= -15$$

Your can assume $H extstyle D_8$. It is. Let's find the left cosets.

$$H = \{ 1, r^2 \} = r^2 H$$
 $rH = \{ r, r^3 \} = r^3 H$
 $sH = \{ s, sr^2 \} = sr^2 H$
 $sr H = \{ sr, sr.r^2 \} = \{ sr, sr^3 \} = sr^3 H$

$$D_8/H = \{H, rH, sH, srH\}$$

i dentity

calculations:

$$(rH)(sH) = (rs)H$$

= $(sr^{-1})H$
= $(sr^{-1})H$
= $(sr^{-3})H$
= srH

rH + H orders: $(rH)(rH) = r^2H$ Hhas order 1 rH has order 2 SH + H $(sH)(sH) = s^{2}H = 1, H = H$ sH has urder Z SrH+H (srH)(srH) = (srsr)H $=(ssr^{-1}r)H$ $=(S^2, 1)H$ $= 1 \cdot H$ so, srH has order 2

D8/H is not cyclic since no element has order 4.

HW 6

8

Suppose that G is an abelian group and H

G/H is abelian.

Proof: Let $x,y \in G/H$. Then, x = aH, y = bH where $a,b \in G$. Then, x = aH) (bH) = (ab)H = (ba)H xy = (aH)(bH) = (ab)H = (ba)H(since G is abelian)

$$=(bH)(\alpha H)=y\times.$$

Thus, G/H is abelian

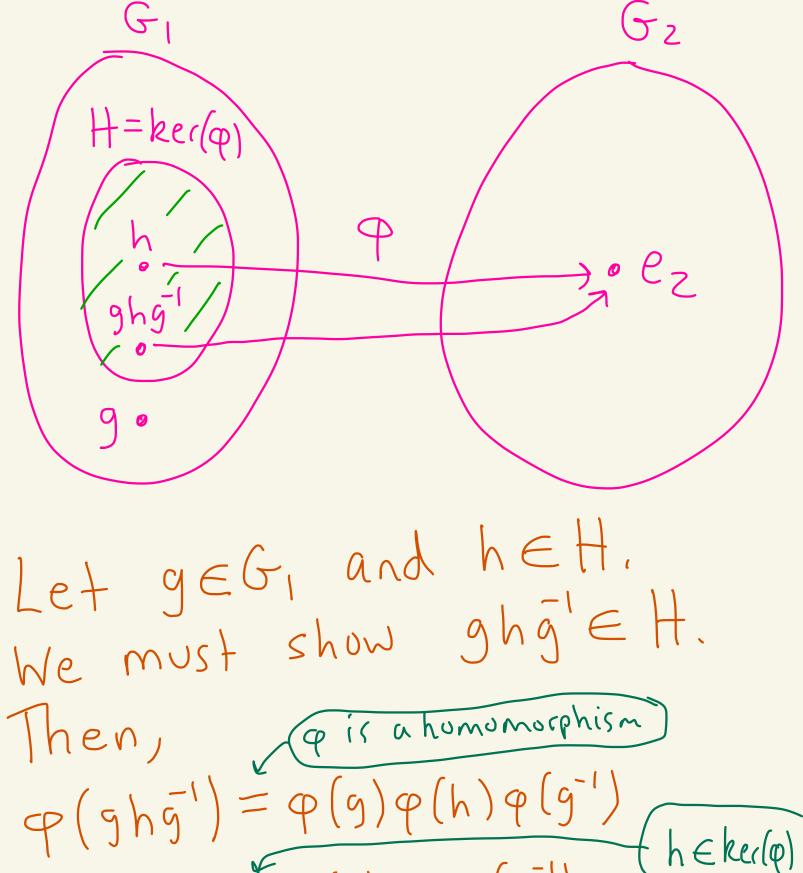
[HW 6]

Let $\varphi: G_1 \to G_2$ be a homomorphism. Show that $\ker(\varphi)$ is a normal Subgroup of G_1 .

Plost:

By class/HW 4 #6(c) we know ker(q) is a subgroup of G1.

Let $H = \ker(\varphi)$.



 $= \varphi(g) e_2 \varphi(g^{-1})$ $= \varphi(g) \varphi(g^{-1})$

=
$$\varphi(gg^{-1})$$
= $\varphi(e_1)$

So, H & G,

METHOD 2:

Let $H = \ker(\varphi)$, $g \in G_1$. We want that gH = Hg. Let's show $gH \subseteq Hg$.

Pick XEgH.

Then, x = gh where hett.

Then,
$$\varphi(x\bar{g}') = \varphi(gh\bar{g}') = \frac{1}{4} = e_Z$$

$$So, x\bar{g}' \in H.$$
Thus, $x\bar{g}' = h_1$ where $h_1 \in H_1$

$$So, x = h_1 g.$$
Thus, $x \in Hg.$

$$So, g \in H \subseteq Hg.$$

$$Similarly, Hg \subseteq gH.$$