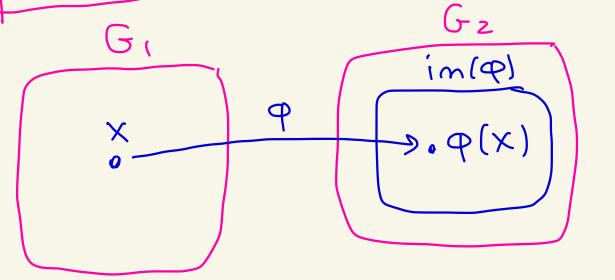
Math 4550 11/19/25

Topic 7 - 1st iso. theorem

Theorem (First isomorphism theorem) Let P: G, -> Gz be a homomorphism where G, and Gz are groups. Then, $G_1/e^2 = im(\varphi)$

/ker(φ)

Proof outline: Let H=ker(φ)



$$(G_1/H) = \varphi(x)$$

$$(G_1$$

Ex: Define the homomorphism
$$\varphi: \mathbb{Z}_q \to \mathbb{Z}_3 \quad \text{where} \quad \varphi(T) = \mathbb{Z}$$

$$\mathbb{Z}_q = \mathbb{Z}_3$$

$$\mathbb{Z}_q = \mathbb{Z}_3$$

$$\mathbb{Z}_q = \mathbb{Z}_3$$

$$H = \ker(\varphi) = \{0, \overline{3}, \overline{6}\} \leftarrow \begin{cases} \ker(\varphi) \\ \text{is always subgrights} \\ \text{Subgrights} \end{cases}$$

$$\frac{1}{2} + H = \{2, \overline{5}, \overline{8}\}$$

$$Z_{9}/H$$
 $im(\varphi) = Z_{3}$
 $O + H$
 $O + H$

 $\frac{Formula;}{T(a+H)} = \varphi(a)$

+ is an isomorphism

Prouf of first is omorphism theorem: Let P: G, + Gz be a homomorphism. Let H=ker(q), We know from class that H&G, So, G/H is a group using the Operation: $(\alpha H)(bH) = (ab) H$ ψ: G1/H → im(Φ) by $\psi(\alpha H) = \varphi(\alpha)$

Claim 1: Y is well-defined

Pf of claim 1: Suppose aH = bH where $a, b \in G$, We must show: $\Psi(aH) = \Psi(bH)$ That is we must show $\varphi(a) = \varphi(b)$ Since aH=bH we know $a \in bH$. So, a=bh where $h \in H$. Then,

Then, $\frac{1}{(aH)} = \varphi(a) = \varphi(bh)$ $= \varphi(b) \varphi(h)$ $= \varphi(b) \cdot e_{z}$ $= \varphi(b)$ $= \varphi(b)$ $= \varphi(b)$ $= \varphi(b)$ $= \varphi(bH)$

Claim

Claim 2'. Y is an isomorphism

First we show that + is a homomorphism.

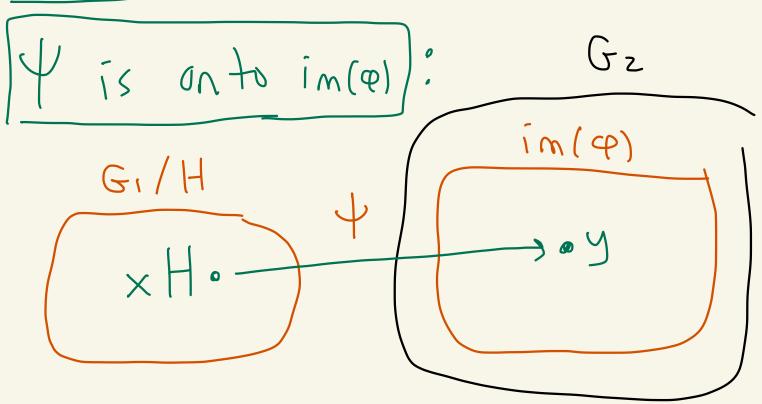
aH, bH & G,/H. Coperation in GI(H) Then, +((aH)(bH))=+((ab)H)def of + = p(ab) $\frac{1}{\varphi \text{ is a hom.}} = \varphi(a) \varphi(b)$ def of the So, 4 is a homomorphism.

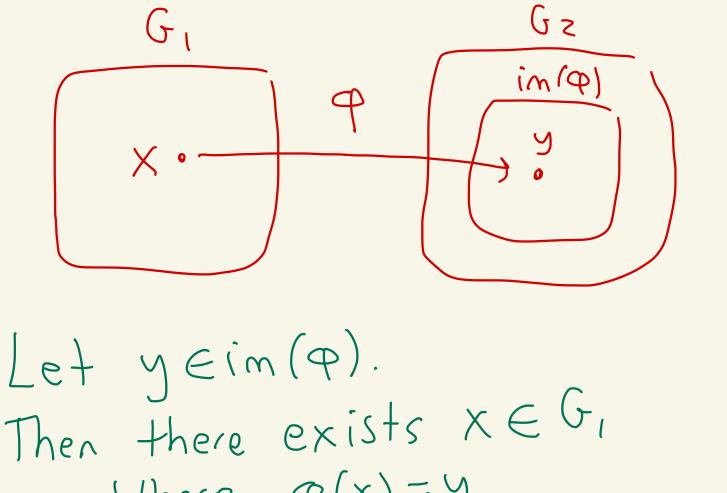
 $\frac{4}{\text{Suppose}}$ $\frac{1-1}{\text{Suppose}}$ $\frac{1}{\text{AH}}$

where aH, bH E G,/H.

Then, $\varphi(a) = \varphi(b)$.

So, $\varphi(a) \varphi(b) = e_z$ identity in G_z Then, $\varphi(\vec{a})\varphi(b) = e_2 \cdot \varphi(\vec{a})$ Then, $\varphi(\vec{a}b) = e_2 \cdot \varphi(\vec{a}b)$ So, $ab \in H \leftarrow (H=ker(\varphi))$ By a theorem in class, att=bH. So, 4 is 1-1.





Where $\varphi(x) = y$. Then, $x H \in G_1/H$ and $\psi(xH) = \varphi(x) = y$

ilolamento!