theorem : Let ^V be ^a vector space over ^a field F. Suppose dimfv)=n > ⁰ . Then the following are true : ① Let V1 , V2 , . . . , Vm C- V. (a) If ^m > ⁿ , then ^V , , Vz , . . . > Vm are linearly dependent. (b) If man, then ^V , ,Vz , a.) Vm do not span V. (c) If m=n and V1, V2 , . . Vm span V, then Vi , V2, . . . ,Vm are also linearly independent and hence form ^a basis for V. (d) If m=n and ^V , ,Vz , . . , Vm are linearly independent, then ✓ 1) V2 , - c. , Vm Span ^V and hence form ^a basis for V.

Proof: We have that dim(V)=n.
$$
\boxed{P_3}
$$

\n $\boxed{D \quad L \in + \quad V_1, V_2, ..., V_m \in V}$.
\n(a) Suppose that m>W.
\nSince dim(V) = n we know that
\n V has a basis with n vectors.
\nSo, V is spanned by n vectors.
\nFrom a previous, theorem, since
\n $V_1, V_2, ..., V_m$ are linearly dependent.
\n $V_1, V_2, ..., V_m$ are linearly dependent.
\n $V_1, V_2, ..., V_m$ are linearly dependent.

(b)
$$
5^{oppose}
$$

Let's show that $V_{1}, V_{2}, \ldots, V_{m}$
do not span $V_{1}, V_{2}, \ldots, V_{m}$
Suppose instead $V_{1}, V_{2}, \ldots, V_{m}$
diid span V.

Then from our previous results, p9 $since$ $m < n$, and v_1 , v_2 , . . . , V_m Span ^V, we would have that any set of ⁿ vectors must be linearly dependent . But since $dim(V) = n$ there must be a basis for ^V of size n. So, I here is a set of ⁿ vectors in V that are linearly independent . Contradiction. ζ $V_{(1)}V_{(2)}$. . .₎ Vm do not span V.

(c) Suppose m=n and $\frac{P}{S}$ $\mathsf{V}_{\mathsf{v}}\mathsf{V}_{\mathsf{z}}$ ر، V_{z} , V_m span V W_1, V_2, \ldots, V_m
We want to show that V_1, V_2, \ldots, V_m are linearly independent. $(HWZ-#7b)$ Some finites
Prove that
is a basis $SupposeV\neq\Sigma\overline{0}$ is spanned by suppose V 7 200 is of vectors.
Some finite set S of vectors. some Timing
Prove that some subset of
is a basis for v basis for ^V $Let S = \frac{1}{2}V_{1,1}V_{2,1}$ $\overline{}$... \sqrt{m} By this $\begin{matrix} Hw & \text{problem,} \\ C & 0 & F \end{matrix}$ n J
There is a this 11:0
Subset S 'problem, int is a basis for V. $Sine$ dim $(V) = n$, every basis for ^V has n ' $v = n$, every base.
 $v = n$, every base So, S $\begin{array}{cc} & n & -1 \\ n & n & n \end{array}$ vectors . Thus, $S' = S$. Thus, $5-50.5$
 $5=24.7421...8$ Is a basis for V and is thus $S' = S$. Investigations
basis for VaA is thus linearly independent.

(d) Suppose $m=n=dim(V)$ $\begin{bmatrix} p9 \\ 6 \end{bmatrix}$ and V₁, V₂, . . .,Vm Are linearly independent. We want to show that V_1, V_2, \ldots, V_m
We want to show there are a basis span to show That's spasis for V. Let $W=Span(\{v_1,v_2\})$. . > Vm }). So W is a subspace of V. \circ + \vee . We will now show \bullet $\overline{\vee}$ $+hat W=V.$ We know $W \subseteq V$. $\left(\begin{array}{cccc} V_1 & V_2 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ V_{p^2} & \cdots & V_{p^m} \end{array}\right)$ We need to show that VEW . Let $V \in V$. $Sine dim (V) = n = m$ we know that the n+1=mtl vectors $V_{1,1}V_{2,1}...V_{m,j}V_{n}$ I vectors in dependent from

Thus, there exist
\n
$$
C_1, C_2, ..., C_m, C_{m+1} \in F
$$

\nnot all equal to zero, where
\n $C_1V_1 + C_2V_2 + ... + C_mV_m + C_{m+1}V = 0$
\n $C_1V_1 + C_2V_2 + ... + C_mV_m = 0$
\n $C_1V_1 + C_2V_2 + ... + C_mV_m = 0$
\nwith not all $C_1, C_2, ..., C_m$ equivalling
\nwith not all $C_1, C_2, ..., C_m$ equivalling
\nBut this would contradict the fact
\n $\{h_n + V_1, V_2, ..., V_m \text{ are linearly}$
\n $\{h_n + V_1, V_2, ..., V_m \text{ are linearly}$
\n $\{h_n + V_2, V_2 + ... + C_mV_m + C_{m+1}V_1 = 0\}$
\n $C_1V_1 + C_2V_2 + ... + C_mV_m + C_{m+1}V_1 = 0$

and we get $V = C_{m+1}^{-1} \left(-C_1 V_1 - C_2 V_2 - \dots - C_m V_m \right)$ Cxists $Sine_{Cmt}$ \neq C^{-1} $N_{1}+(-C_{m+1}^{-1}C_{2})V_{2}$ رەك

$$
V = [-C_{m+1}C_{1}]^{T} + (-C_{m+1}^{-1}C_{m})V_{m}
$$

... + (-C_{m+1}^{-1}C_{m})V_{m}
Thus, V \in Span({\{v_{1}, v_{2},..., v_{m}\}}) = W.
So, V = W and V_{1}, V_{2},..., V_{m}
Thus a

for part 2. Now

Q
\nLet W be a subspace of V.
\nWe first will show that W is
\nfinite-dimensional and
\n
$$
dim(W) \le n = dim(V)
$$
.
\n $\begin{aligned}\n\text{The sum of } V: \text{ the sum of } V: \text{ the$

Continue to add vectors from W [pglo to this set such that at each stage K, the vectors $\{X_1, X_2\}$. . .) $X \kappa$ } are linearly ✓ independent . W $Sine \t\t\omega \subseteq V$ and $dim(V) = n$ part (a) , there by $\begin{pmatrix} x_1 & x_2 & x_3 \ x_2 & x_3 & y \end{pmatrix}$ must reach ^a stage ko In Where $S_0 = \sum X_i, X_2$. . o
・ *)* $\overline{\mathsf{X}}$ x_0 is linearly independent but adding any new vector from nations)
W to S. will yield a linearly dependent set .

 $HW 2 - 7(a)$ ' $HW2 - H(a)$
Let S be a finite set of linearly independent vectors from ^V and let $X \in V$ with $X \notin S$. Then $SU\{x\}$ is linearly dependent
iff $X\in Span(S)$ Let XEW. Let $X \in W$.
If $X \in S$., then $X \in Span(S_{o})$. $I f X E$ So, $I n c$, by the construction
 $I f X \notin S_o$, then by the construction $X4$ So, then by the considers?
of So we have that $S_v U \{X\}$ is linearly dependent. So by Hw 2, $F(a)$ $x \in Span(S_{o})$. $\ln v_2$ $if x \in W,$ then $X \in Span(S_{o})$. S_{0} , $W= Span(S_{0}).$ Since So is ^a 1in . ind. set, So is a basis for W. Thus, Thus, $dim(w) = k_0 \le n = dim(v)$.

Now we show that W=V pay iff dim (^w) ⁼ dim (V1 . (ED) If V=W, then dim (^V) - dimlwl. (G) Now suppose dim (^w)=dim(V1 . Let's show that W=V . Then ^W has ^a basis of n=dim(V1 elements, call it B={ wiswz , " , Wn } So, W= span (p) . ^p is ^a set of ÷:÷÷: ⁿ : vectors that are linearly independent and V also ! So, ¹³ is ^a basis for V . Thus, W= span (B) ⁼ V. ☒