①(a)	We have that	5 in we Ti is linear
$T(0_y) = T(0_v + 0_v) = T(0_y) + T(0_y)$		
14L - T(0_v) to both sides to get		
$-T(0_v) + T(0_v) = -T(0_v) + T(0_v) + T(0_v)$		
50, 0 _w = T(0_v)		
0L(6) This follows from 1(c) with n=2		
①(c)		
(d) Suppose that T is a linear transformation:		
We prove this by induction:		
We prove this by induction:		
1f n=1, then T(α,x_1) = α, T(x_1)		
by the def of linear transformation:		
Suppose k>31 and k		
$T(\sum_{i=1}^{n} x_i x_i) = \sum_{i=1}^{n} x_i T(x_i)$		

Theay
\n
$$
T\left(\sum_{i=1}^{k+1} \alpha_{i}x_{i}\right) = T\left(\alpha_{1}x_{1}+\alpha_{2}x_{2}+\cdots+\alpha_{k}x_{k}\right)+\left(\alpha_{k+1}x_{k+1}\right)
$$
\n
$$
\frac{d}{dt}\left(\begin{matrix} \frac{d}{dt} & \frac{d}{dt} & \frac{d}{dt} & \frac{d}{dt} & \frac{d}{dt}\left(\alpha_{k}x_{1}+\alpha_{k}x_{2}+\cdots+\alpha_{k}x_{k}\right)+T\left(\alpha_{k+1}x_{k+1}\right) \\ \frac{d}{dt} & \frac{d}{dt}\left(\alpha_{k}x_{1}+\alpha_{k}x_{2}+\cdots+\alpha_{k}x_{k}\right)+\alpha_{k+1}T\left(x_{k+1}\right) \\ \frac{d}{dt}\left(\alpha_{k}x_{2}\right) & \frac{d}{dt}\left(\alpha_{k}x_{1}+\alpha_{k}x_{2}\right)+\cdots+\alpha_{k}T\left(x_{k}\right)+\alpha_{k+1}T\left(x_{k+1}\right) \\ \frac{d}{dt}\left(\alpha_{k}x_{2}\right) & \frac{d}{dt}\left(\alpha_{k}x_{2}\right) & \frac{d}{dt}\left(\alpha_{k}x_{2}\right) & \frac{d}{dt}\left(\alpha_{k}x_{2}\right) \\ \frac{d}{dt}\left(\alpha_{k}x_{2}\right) & \frac{d}{dt}\left(\alpha_{
$$

$$
D(a)
$$

T is linear
Let $x = (a,b,c)$ and $y = (d,e,f)$ be in \mathbb{R}^2
and $a, \beta \in \mathbb{R}$.

Then,
\n
$$
T(\alpha x + \beta y) = T(\alpha (a, b, c) + \beta (d, e, f))
$$
\n
$$
= T(\alpha a + \beta d, \alpha b + \beta e, \alpha c + \beta f)
$$
\n
$$
= (\alpha a + \beta d - \alpha b - \beta e, 2(\alpha c + \beta f))
$$
\n
$$
= (\alpha a + \beta d - \alpha b - \beta e, 2\alpha c + 2\beta f)
$$

and
\n
$$
{}_{\alpha}\tau(x)+\beta\tau(y)=\alpha\tau(a,b,c)+\beta\tau(d,e,f)
$$
\n
$$
= \alpha(a-b,2c)+\beta(d-e,2f)
$$
\n
$$
= (\alpha a-db,2\alpha c)+(\beta d-e,2\beta f)
$$
\n
$$
= (\alpha a-db,2\alpha c)+2\beta f
$$
\n
$$
= (\alpha a-db+bd-e,2\alpha c+2\beta f).
$$
\n
$$
= (\alpha a+d-d-db-e,2\alpha c+2\beta f).
$$
\nNote that $\tau(\alpha x+\beta y) = \alpha\tau(x)+\beta\tau(y)$

(i) Let
$$
l
$$
 compute $N(T)$
\nNote that $(a,b,c) \in N(T)$
\nif $T(a,b,c) = (0,0)$
\nif $(a-b,2c) = (0,0)$
\nIt is $\frac{1}{2c} = 0$
\nThis is equivalent to $\frac{1}{2c} = 0$ or $\frac{1}{2c} = 0$
\nThis is a reduced System with
\nleading Vuniable's a, c and free vaniable b:
\nIs a, b, c, d, d, c, a, d, free vaniable b:
\nSch b = t.
\nThus, $(a,b,c) \in N(T)$
\nif $(a,b,c) = (t,t,0) = t(1,1,0)$
\nIt is for $(N(T), S) = \{ (1,1,0) \}$

\n- (ii) From part
$$
\lambda
$$
 we get that $N(T) = 1$
\n- (iii) From $HW = 3$ $\#6(a)$ we know that T is $1-1$ iff $\dim(N(T)) = 0$.
\n- Since this T is $1-1$, if $\dim(N(T)) = 0$.
\n- N be $1-1$.
\n- (iv) From the rank-nullity theorem, N is $1-1$.
\n- (v) From the rank-nullity theorem, N is $3 = 1 + \dim(N(T)) + \dim(N(T))$.
\n- So, $3 = 1 + \dim(N(T))$

$$
\begin{aligned}\n\text{(2)}(b) & \text{Total } \{ \text{linear } \} \\
\text{For example,} \\
\text{Total } \{ (1,1) + (1,2) \} = T(2,3) = (2-3,3^2) = (-1,9) \\
\text{Total } \{ (1,1) + (1,2) \} = T(2,3) = (2-3,3^2) = (0,1) + (-1,9) \\
\text{Total } \{ (1,1) + T(1,2) \} = (1-1,1^2) + (1-2,2^2) = (0,1) + (-1,9)\n\end{aligned}
$$

Thus,
\n
$$
T((1,1)+(1,2)) \neq T(1,1)+T(1,2)
$$

\n $T((1,1)+(1,2)) \neq 0$ some+*hing* like this:
\n $T(2 \cdot (1,1)) = T(2,2) = (2-2,2^{2}) = (0,4)$
\nand
\n $2 \cdot T(1,1) = 2 \cdot (1-1,1^{2}) = 2 \cdot (0,1) = (0,2)$
\nSo, $T(2 \cdot (1,1)) \neq 2 \cdot T(1,1)$

 $(2)(c)$ T is linear Let $X = \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \end{pmatrix}$ and $y = \begin{pmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \end{pmatrix}$ and $\alpha, \beta \in \mathbb{R}$. $T(\alpha x+\beta y)=T((\alpha a_{1}^{\alpha} \alpha b_{1}^{\alpha} \alpha c_{1}^{\alpha})+(\beta a_{2}^{\alpha} \beta c_{2}^{\beta} \beta c_{1}^{\gamma})$ = $T(xa_1+Ba_2 \propto b_1+Bb_2 \propto c_1+Bc_2)$
= $T(xd_1+Bd_2 \propto c_1+Bc_2 \propto c_1+Bc_2)$ $(xc_{1}+bc_{2})+2(xd_{1}+bd_{2})$ = $(2(\alpha a_{1}+\beta a_{2})-(\alpha b_{1}+\beta b_{2})$ = $\begin{pmatrix} 2\alpha a_1 - \alpha b_1 & \alpha c_1 + 2\alpha d_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 2\beta a_2 - \beta b_2 & \beta c_2 + 2\beta d_2 \\ 0 & 0 \end{pmatrix}$ = $\alpha \begin{pmatrix} 2a_1-b_1 & c_1+2d_1 \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 2a_2-b_2 & c_2+2d_2 \\ 0 & 0 \end{pmatrix}$ $= \alpha T(x) + \beta T(y)$

(i)
$$
\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in N(T)
$$

\n
$$
if f \quad (a \cdot b \cdot c) = (0, 0)
$$
\n
$$
if f \quad (2a - b \quad c + 2d) = (0, 0)
$$
\n
$$
if f \quad (2a - b \quad c + 2d = 0)
$$
\n
$$
if f \quad (2a - b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a - \frac{1}{2}b \quad c + 2d = 0)
$$
\n
$$
if f \quad (a -
$$

Thus,
$$
\begin{pmatrix} a & b & c \\ d & c & f \end{pmatrix} \in N(T)
$$

\niff $\begin{pmatrix} a & b & c \\ d & c & f \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -25 \\ 5 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + s \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$
\niff $\begin{pmatrix} a & b & c \\ d & c & f \end{pmatrix} = t \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + s \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$
\nwhere t, s, u, v can be any real, $\pm s$.
\nLet f, s, u, v can be any real, $\pm s$.
\nLet f, s, u, v can be any real, $\pm s$.
\nthen, $N(T) = span(\beta)$ from above.
\nThen, $N(T) = span(\beta)$ from above.
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
\n $Y_{on} = bin \begin{pmatrix} 0 & 0$

$$
(jii) From problem 6(a), T is 1-1\nif dim(N(r1) = 0.\nSince dim(N(r1) = 4 we know that T\nis not 1-1.\n(iii) By the rank-nvlify theorem\n
$$
j_{\text{min}}(M_{z,3}(R)) = \dim(N(r1) + \dim(R(r1))
$$
\n
$$
j_{\text{min}}(M_{z,3}(R)) = \dim(N(r1) + \dim(R(r1))
$$
\n
$$
S_{00} = 4 + \dim(R(T1)).
$$
\nThus, dim(R(T1) = 2
\n
$$
N_{005}, \dim(R(T1) = 2)
$$
\n
$$
N_{1,2}(R) \text{ is dimension } H.
$$
\n
$$
N_{1,2}(R) \text{ has dimension } H.
$$
\n
$$
N_{1,2}(R) \text{ has dimension } H.
$$
\n
$$
N_{1,2}(R) \text{ has dimension } H.
$$
\n
$$
S_{0}, T \text{ is not onto } H.
$$
\n
$$
\frac{1}{\dim 2}
$$
$$

(vi)
\n
$$
\frac{\text{Gain: Let } S = \left\{ \begin{pmatrix} m & n \\ 0 & 0 \end{pmatrix} \mid m, n \in \mathbb{R} \right\}}{\text{Then, } R(\tau) = S.}
$$
\n
$$
\frac{p f}{T} \left\{ \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} z & b & c+2d \\ 0 & 0 \end{pmatrix} \right\} \in S.
$$
\nSo, R(\tau) = S.
\nLet $\begin{pmatrix} m & n \\ 0 & 0 \end{pmatrix} \in S$
\nSet $a = \frac{1}{2}m, b = 0$, $c = n, d = 0, e = 0, f = 0$.
\nThen,
$$
T(a e f) = T \begin{pmatrix} m/2 & 0 & n \\ 0 & 0 & 0 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} z(m/2) - 0 & n + 2(0) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} m & n \\ 0 & 0 \end{pmatrix}
$$
\nSo, $S = R(T)$.
\nSo, $S = R(T)$.
\n
$$
\boxed{\text{Max}(\mathbb{R})} \left(\begin{pmatrix} m/2 & 0 & n \\ 0 & 0 & 0 \end{pmatrix} \right) + \begin{pmatrix} m/3 \\ 0 & 0 \end{pmatrix}
$$

 $\bigodot(d)$

$$
\frac{\Gamma is linear}{Let f_{1} = atbxtcx^{2}, f_{2} = d+ex+fx^{2} \in P_{2}(\mathbb{R})}
$$

and $\alpha, \beta \in \mathbb{R}$.

(i)
$$
a+bx+cx^{2} \in N(T)
$$

\n
$$
[f f (a+bx+cx^{2}) = 0+0x+0x^{2}+0x^{3}
$$
\n
$$
[f f a+bx^{3} = 0+0x+0x^{2}+0x^{3}
$$
\n
$$
[f f a=0,b=0, c is any real number
$$

Thus,
\n
$$
N(\tau) = \left\{ c x^{2} \right\} c \in \mathbb{R} \left\{ s = span \left(\frac{c}{2} x^{2} \right) \right\}
$$
\nThus,
\n
$$
S = \left\{ x^{2} \right\} \text{ is a basis for } N(\tau).
$$
\n
$$
(ix) By part i, dim(N(\tau)) = 1
$$
\n
$$
(ix) By Hw problem 6a,
$$
\n
$$
T \text{ is } 1-1 \text{ if } dim(N(\tau)) = 0.
$$
\n
$$
Since this isn't the case
$$
\n
$$
T \text{ is not } 1-1.
$$

$$
(w) By the rank-nullity theorem\ndim(P2(\mathbb{R})) = dim(N(\tau)) + dim(R(\tau))
$$
\n
$$
S_{\rho} = 1 + dim(R(\tau))
$$
\n
$$
S_{\rho} \quad diam(R(\tau)) = 2
$$

So, dim
$$
(R(T)) = 2
$$

\n
\n(v) $\frac{P_2(R)}{\sqrt{\frac{R(T) - R(T) - d(m=T)}{R(T) - d(m=2)}}}$
\nSince $R(T)$ is 2-dimensional and sits
\ninside a 4-dimensional space $P_3(R)$
\nwe have $R(T) \neq P_3(R)$
\nSo, T is not onto:
\n(vi) $R(T) = \sum a + bx^3 | a, b \in \mathbb{R}^2$
\n $= span(\{1, x^3\})$
\nSo, $\{1, x^3\}$ is a basis for $R(T)$.

(2)(e) T is not linear.
\nFor example,
\n
$$
T(\vec{O}) = T(0+0\times+0\times^{2})
$$
\n
$$
= (1+0)+(1+0)\times+((1+0)\times^{2}
$$
\n
$$
= 1+X+X^{2} = \vec{O}.
$$
\nRecall c linear transformation read the
\n
$$
T(0) = \frac{1}{100}
$$
\n
$$
T(0) = \frac{1}{100}
$$
\n
$$
T(0) = \frac{1}{100}
$$

3)
\nLet
$$
f, g \in C(\mathbb{R})
$$
 and $\alpha, \beta \in \mathbb{R}$.
\nThen,
\n
$$
T(\alpha f + \beta g) = \int_{\alpha}^{b} (\alpha f(t) + \beta g(t)) dt
$$
\n
$$
= \alpha \int_{\alpha}^{b} f(t) dt + \beta \int_{\alpha}^{b} g(t) dt
$$
\n
$$
= \alpha T(f) + \beta T(g).
$$

$$
\begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} a \\ a \end{pmatrix} = \begin{pmatrix} 1 & \pi \\ \frac{1}{2} & -10 \end{pmatrix} \begin{pmatrix} 17 \\ -5 \end{pmatrix} = \begin{pmatrix} 17 - 5\pi \\ \frac{17}{2} + 50 \end{pmatrix} = \begin{pmatrix} 17 - 5\pi \\ \frac{117}{2} \end{pmatrix}
$$

$$
\begin{aligned}\n(L) \quad \mathcal{L}_{A}(\mathbf{x}) &= \begin{pmatrix} -\lambda & 1 & 0 \\ 1+\lambda & 0 & -1 \end{pmatrix} \begin{pmatrix} -2\lambda \\ 1.57 \end{pmatrix} \\
&= \begin{pmatrix} -\lambda(-2\lambda) + 4 + 0 \\ 1.57 \end{pmatrix} \\
\begin{pmatrix} \lambda^{2} & -1 \\ 1.57 \end{pmatrix} \n\end{aligned}
$$
\n
$$
= \begin{pmatrix} 2 \\ -2\lambda + 2 - 1.57 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 2 \\ 0.43 - 2\lambda \end{pmatrix}
$$

S Let
$$
T: V \rightarrow W
$$
 be a linear transformation
Let $v_1, v_2, ..., v_n \in V$ and $V = span(\{v_1, v_2, ..., v_n\})$
Let $S = span(\{T(v_1), T(v_2), ..., T(v_n)\})$
We want by show that $S = R(T)$

We break the proof into two parts. Claim 1: First we show that $S \subseteq R(T)$. Let yes. & we will show this implies that yerry. Thats Then, $y \in span(\{T(v_1), T(v_2), \ldots, T(v_n)\})$ So there exist scalars $c_1, c_2, ..., c_n \in F$ where $y = c_1 \tau(v_1) + c_2 \tau(v_2) + \cdots + c_n \tau(v_n)$

Then) $y = c_1 T (v_1) + c_2 T (v_2) + ... + c_n T (v_n)$ = $T(c_1V_1 + c_2V_2 + \cdots + c_nV_n) = T(v)$ Where V=C, V, + C2V2+ ... + C Vn because Hansformation 15 a linea Because V1, V2, 11, Vn me In V we know that $v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$ is in V. Thus, $y = T(u) \in R(T)$. Recall $R[T] = \{T(x) | x \in V\}$ So, We have shown claim I, SERIT)

Claim 2: R(f) SS	We need to show that
Let $ye R(f)$.	Thus g is also a
Then by the definition of R(f) we know that $y = T(x)$ where $x \in V$.	
Since $x \in V$ and $V = span(Fv_1v_2, ..., v_n)$	
Since $x \in V$ and $V = span(Fv_1v_2, ..., v_n)$	
Since $x \in V$ and $V = span(Fv_1v_2, ..., v_n)$	
We know that $x = c_1V_1 + c_2V_2 + ... + c_nV_n$.	
Then $y = T(x) = T(c_1V_1 + ... + c_nV_n)$	
Then $y = T(x) = T(c_1V_1 + ... + c_nV_n)$	
Then $y = T(x) = T(c_1V_1 + ... + c_nV_n)$	
Then $y = T(x) = T(c_1V_1 + ... + c_nV_n)$	
Then $y = C_1T(u_1) + C_2T(v_2) + ... + C_1T(v_n)$	
Then $y = C_1T(u_1) + C_2T(v_2) + ... + C_1T(v_n)$	
Then $y = C_1T(u_1) + C_2T(v_2) + ... + C_1T(v_n)$	
Then $y = C_1T(u_1) + C_2T(v_2) + ... + C_1T(v_n)$	
So $y \in S$.	
So $y \in S$.	
Thus, R(f) S S.	
So $y \in S$.	
Thus x have shown claim 2	
By claim 1, and claim 2	
we have that <	

6) (a) We want to prove the following:

\nT is one-to-one if it N(T) =
$$
\{o_v\}
$$

\n($\pm \sqrt{}$) Suppose that T is one-to-one.

\nWe will show that this implies that N(T) = $\{o_v\}$

\nbe cause T is an linear transformation by a theorem in class (and in this How)

\na theorem in class (and in this How)

\nwe know that T(0v) = 0

\nThus, O, E N(T)

\nSo, $\{o_v\} \subseteq N(T)$

\nSo, $\{o_v\} \subseteq N(T)$

\nWhy are though?

\nSuppose x \in N(T)

\nThen T(x) = O_w:

\nBy T is one-to-one and so since T(x)=T(0_v).

\nBy T is one-to-one and so since T(x)=T(0_v).

\nBy T is one-to-one and so since T(x)=T(0_v)

We have shown that if
$$
x \in N(U)
$$
, then
\nThus, $N(\tau) \le \{0, \}$.
\nSince $\{0, \} \le N(\tau)$ and $N(\tau) \le \{0, \}$
\nwe know that $N(\tau) = \{0, \}$
\nwe know that $N(\tau) = \{0, \}$
\n $(\sqrt{\tau})$ Suppose that $N(\tau) = \{0, \}$.
\nLet's show that this implies that
\n T is one-to-one.
\nSuppose that $T(x) = T(y)$ where $x, y \in V$.
\nWe must show that T is one-to-one.
\nSince $T(x) = T(y)$ we have that $T(x) - T(y) = 0$
\n $\{1, y, y\}$, $T(x-y) = 0$ when T is linearly
\n $\{0, x-y \in N(\tau)\}$.
\nThus, $X-y = 0$ when $\{1, y\} = \{0, 0\}$
\n $\{0, x \in V, y\} = \{0, 0\}$ when $\{1, y\} = \{0, 0\}$
\n $\{0, x \in V\}$.
\nThe above argument, shows that if $N(\tau) = \{0, 0\}$
\n $\{0, y \neq 0\}$ then this implies that

(6) (b) The assumption for this problem is
\nthat V and W are finite dimensional and
\nthat dim (V) = dim (W).

\n
$$
T: V \rightarrow W
$$
 is a linear transformation.

\nProve: T is one-b-one if T is one
\n(=) Suppose that T is one-b-one.

\nTo show that this implies that T is no-
\nto show that R(T) = W.

\nBecause T is one-b-one we know from
\nfor them 6(a) that N(T) = $\{0,1\}$ and
\nso dim (N(T)) = 0.

\nAlso above we have the assumption for this
\n\n
$$
P(0) = W = \frac{1}{2} \int_{0}^{0} W(t) dt
$$
\n
$$
P(0) = \frac{1}{2} \int_{0}^{0} W(t) dt
$$
\n
$$
P(0) = \frac{1}{2} \int_{0}^{0} W(t) dt
$$
\n
$$
= \frac{1}{2} \int_{
$$

Thus, dim (w)=dim(R(T))
\nSince R(T) is a
\nsu''sque of W and
\ndim(R(T))= dim(w)
\nwe have from a Heoren
\nin class that W=R(T1).
\nThus, T is ont.
\n
$$
(F) Now superse that T is ont
$$
.
\nWe will show that T is an-
\nwe will show that T is an-
\nthe sum of N(T)= $\{o_v\}$, $(T_0$ is only
\nthe sum of N(T)= $\{o_v\}$, $(T_0$ is only
\n (T_0)
\nSince T is ont we know R(T)=W
\nThus, dim (R(T)) = dim(W).
\nBy the assumption of this problem we
\nknow that dim(V) = dim(W) + dim(R(T))
\nThus,
\ndim(W) = dim(N) = dim(N(T)) + time
\n $frac$

Thus,
$$
dim(N(T)) = 0
$$
.
\nSo, $N(T) = \{0, 3\}$.
\nThus, by problem $G(a)$, T is one-to-one.

$$
\begin{array}{rcl}\n\hline\n\textcircled{a} & \text{Cylpose that} & \text{is one-to-one} \\
\hline\n\text{c} & \text{ccl} & \text{ccl} \\
\text{Cylpose that} & \text{ccl} & \text{ccl} \\
\text{Cylence } & \text{ccl} & \text{ccl} & \text{ccl} \\
\text{Cylence } & \text{ccl} & \text{ccl} & \text{ccl} \\
\text{Cylence } & \text{ccl} & \text{ccl} & \text{ccl} \\
\text{Cylence } & \text{ccl} & \text{ccl} & \text{ccl} \\
\text{Cylence } & \text{ccl} & \text{ccl} & \text{ccl} & \text{ccl} \\
\text{Cylence } & \text{ccl} & \text{ccl} & \text{ccl} &
$$

$$
\begin{aligned}\n\textcircled{1} & \left(\text{A} \right) \quad \text{[Method 1] } \\
\text{Suppose that } \dim(v) < \dim(w). \\
\text{Then,} \\
\dim(R(T)) &\leq \dim(N) \quad \text{[allowly that } \\
&\leq \dim(v) \\
&< \dim(w) \\
\text{Thus,} \\
\text{Invs,} \\
\dim(R(T)) < \dim(w).\n\end{aligned}
$$

$$
Since R(T) is a subspace of W and\ndim (R(T)) < dim(w) we must\nhave R(T) \neq W. \n\nThus, T is\nnot onto:\n
$$
R = 0
$$
$$

$$
\bigoplus_{u \in H} [a] \quad [\text{Method 2}]
$$
\nLet's prove the contrapositive:
\n $u_{\text{IF}} \tau$ is onto, then dim (v) \geq dim(w)''
\nSuppose T is onto.
\nThen, $R(\tau) = w$.
\nThen, dim (R(\tau)) = dim (w).
\nThus,
\n $dim(v) = \frac{rank\text{-null} \cdot \text{tim}(N(\tau)) + dim(R(\tau))}{dim(R(\tau))} = \frac{dim(N(\tau)) + dim(N(\tau)) \geq 0}{dim(N(\tau))} = \dim(w).$
\nThus, dim (v) \geq dim (w).

(7) (b)

\nLet's prove the corresponding

\n"If T is one-b-one, then
$$
dim(U) \le dim(U)
$$
."

\nSuppose T is one-b-one.

\nThe by problem 6(a) we know that $N(T) = 50y^3$ and so $dim(N(T)) = 0$.

\nBecause $R(T)$ is a subspace of W

\nwe know that $dim(R(T)) \le dim(W)$.

\nThus, $dim(V) = dim(R(T)) + dim(R(T))$

\n $= 0 + dim(R(T))$

\n $= dim(R(T))$

\n $= dim(R(T))$

\n $= dim(R(T))$

\n $= dim(R(T))$

\nSo, $dim(V) \le dim(W)$.