(1)(a)
We have that

$$T(O_v) = T(O_v + O_v) = T(O_v) + T(O_v)$$

Add $-T(O_v)$ to both sides to get
 $-T(O_v) + T(O_v) = -T(O_v) + T(O_v) + T(O_v)$
So,
 $O_w = T(O_v)$
(b) This follows from 1(c) with $n=2$
(c)
(c)
(c)
(c)
(c)
(c)
(c)
We prove thic by induction.
If $n=1$, then $T(\alpha_1 \times 1) = \alpha_1 T(x_1)$
by the def of linear transformation.
Suppose $k \ge 1$ and
 $T(\sum_{i=1}^{n} \alpha_i \times 1) = \sum_{i=1}^{n} \alpha_i T(x_i)$
induction
hypothesis

Then,

$$T\left(\sum_{i=1}^{k+1} \alpha_{i} k_{i}\right) = T\left(\left(\alpha_{1} x_{1} + \alpha_{2} x_{2} + \dots + \alpha_{k} x_{k}\right) + \left(\alpha_{k+1} x_{k+1}\right)\right)$$

$$def = T\left(\alpha_{1} x_{1} + \alpha_{2} x_{2} + \dots + \alpha_{k} x_{k}\right) + T\left(\alpha_{k+1} x_{k+1}\right)$$

$$= T\left(\alpha_{1} x_{1} + \alpha_{2} x_{2} + \dots + \alpha_{k} x_{k}\right) + \alpha_{k+1} T\left(x_{k+1}\right)$$

$$= T\left(\alpha_{1} x_{1} + \alpha_{2} x_{2} + \dots + \alpha_{k} x_{k}\right) + \alpha_{k+1} T\left(x_{k+1}\right)$$

$$= \alpha_{1} T\left(x_{1}\right) + \alpha_{2} T\left(x_{2}\right) + \dots + \alpha_{k} T\left(x_{k}\right) + \alpha_{k+1} T\left(x_{k+1}\right)$$

$$= \alpha_{1} T\left(\alpha_{i}\right)$$

$$= \sum_{i=1}^{k+1} \alpha_{i} T\left(\alpha_{i}\right)$$
By induction, the formula is true for all n.

$$(4) \text{ Suppose } T\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} T\left(x_{i}\right)$$
for all $x_{1}, \dots, x_{n} \in V$ and $\alpha_{1}, \dots, \alpha_{n} \in F$
and $\alpha_{n} y = n \geq 1$

$$\text{Setting } \alpha_{1} = \alpha_{2} = 1 \text{ and } n = 2 \text{ gives}$$

$$T\left(x_{1} + x_{2}\right) = T\left(x_{1}\right) + T\left(x_{2}\right)$$

$$\text{setting } n = 1 \text{ gives}$$

$$T\left(\alpha_{1} x_{1}\right) = \alpha_{1} T\left(x_{1}\right)$$
Thus T is a linear transformation,

2)(a)

$$T$$
 is linear
Let $x = (a,b,c)$ and $y = (d,e,f)$ be in IR^2
and $a, B \in IR$.

Then,

$$T(\alpha X+\beta Y) = T(\alpha(\alpha,b,c)+\beta(d,e,f))$$

$$= T(\alpha \alpha+\beta d, \alpha b+\beta e, \alpha c+\beta f)$$

$$= (\alpha \alpha+\beta d-\alpha b-\beta e, 2(\alpha c+\beta f))$$

$$= (\alpha \alpha+\beta d-\alpha b-\beta e, 2\alpha c+2\beta f)$$

and

$$\begin{aligned} xT(x)+\beta T(y) &= xT(a,b,c)+\beta T(d,e,f) \\ &= x(a-b,2c)+\beta (d-e,2f) \\ &= (xa-xb,2xc)+(\beta d-\beta e,2\beta f) \\ &= (xa-xb+\beta d-\beta e,2xc+2\beta f) \\ &= (xa+\beta d-xb-\beta e,2xc+2\beta f). \\ &= (xa+\beta d-xb-\beta e,2xc+2\beta f). \end{aligned}$$
Note that $T(x+\beta y) = xT(x)+\beta T(y)$

(i) Let'r compute N(T)
Note that
$$(a,b,c) \in N(T)$$

iff $T(a,b,c) = (0,0)$
iff $(a-b,2c) = (0,0)$
iff $(a-b,2c) = (0,0)$
iff $(a-b-2c) = (0,0)$
iff $(a-b-2c) = (0,0)$
 $z_{c} = 0$
So we need to solve this system:
 $a-b = 0$
 $z_{c} = 0$
This is a reduced this system:
 $a-b = 0$
 $z_{c} = 0$
This is a reduced system: with
leading Variables a,c and free variable b .
Set $b = t$.
The solutions are $(D = c)$
 $(a,b,c) \in N(T)$
iff $(a,b,c) = (t,t,0) = t(1,1,0)$
A basis for $N(T)$ is $B = \{(1,1,0)\}$

(iii) from part i we get that
Nullity (T1= dim (N(T))=)
(iii) From HW 3 #6(a) we know
that T is 1-1 iff dim (N(T))=0.
Since this isn't the case, T is
Not 1-1.
(iv) From the rank-nullity theorem,
dim (
$$\mathbb{R}^3$$
) = dim (N(T)) + dim ($\mathbb{R}(T)$)
So, 3 = 1 + dim ($\mathbb{R}(T)$).
Thus, dim ($\mathbb{R}(T)$ =2.
(1) Since T: $\mathbb{R}^3 \rightarrow \mathbb{R}^2$ we see that $\mathbb{R}(T)$ is
a 2-dimensional subspace of the 2-dimensional
Vector space \mathbb{R}^2 . Thus, $\mathbb{R}(T) = \mathbb{R}^2$.
So, T is un to.
(vi) As seen in part V, $\mathbb{R}(T) = \mathbb{R}^2$

Thus,

$$T((1,1)+(1,21) \neq T(1,1)+T(1,2)$$

 $T((1,1)+(1,21) \neq T(1,1) + T(1,2)$
You could also do something like this:
 $T(2 \cdot (1,1)) = T(2,2) = (2-2, 2^{2}) = (0,4)$
and
 $2 \cdot T(1,1) = 2 \cdot (1-1,1^{2}) = 2 \cdot (0,1) = (0,2)$
So, $T(2 \cdot (1,1)) \neq 2 \cdot T(1,1)$

(2)(c)T is linear Let $X = \begin{pmatrix} a_1 & b_1 & c_1 \\ d_1 & e_1 & f_1 \end{pmatrix}$ and $y = \begin{pmatrix} a_2 & b_2 & c_2 \\ d_2 & e_2 & f_2 \end{pmatrix}$ and X,BER. $T(\alpha X + \beta Y) = T((\alpha \alpha_1, \alpha \beta_1, \alpha \alpha_1, \alpha \beta_1) + (\beta \alpha_2, \beta \beta_2, \beta \beta_2))$ $= T \begin{pmatrix} \alpha \alpha_1 + \beta \alpha_2 & \alpha b_1 + \beta b_2 & \alpha c_1 + \beta c_2 \\ \alpha d_1 + \beta d_2 & \alpha e_1 + \beta e_2 & \alpha f_1 + \beta f_2 \end{pmatrix}$ $(\alpha c, +\beta c_2) + 2(\alpha d, +\beta d_2)$ $= \left(2(\alpha_1 + \beta \alpha_2) - (\alpha b_1 + \beta b_2) \right)$ $= \begin{pmatrix} 2\alpha a_1 - \alpha b_1 & \alpha c_1 + 2\alpha d_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 2\beta a_2 - \beta b_2 & \beta c_2 + 2\beta d_2 \\ 0 & 0 \end{pmatrix}$ $= \alpha \begin{pmatrix} 2\alpha_{1}-b_{1} & c_{1}+2d_{1} \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 2\alpha_{2}-b_{2} & c_{2}+2d_{2} \\ 0 & 0 \end{pmatrix}$ $= \chi T(x) + \beta T(y)$

(i)
$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in N(T)$$

iff $T\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} o & o \\ o & o \end{pmatrix}$
iff $\begin{pmatrix} 2a-b & e & 0 \\ c+2d & = & 0 \\ c+2d & = & 0 \end{pmatrix}$
iff $\begin{bmatrix} a & -\frac{1}{2}b & = & 0 \\ c+2d & = & 0 \end{bmatrix}$
iff $\begin{bmatrix} a & -\frac{1}{2}b & = & 0 \\ c+2d & = & 0 \end{bmatrix}$
This is a reduced system with so are
leading variables: a, c free variables; b, d, e, f
free variables; b, d, e, f
set $b=t, d=s, e=u, f=v$ and then solve (D, \mathbb{Z}) .
(a) gives $a = \frac{1}{2}b = \frac{1}{2}t$

Thus,
$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in N(T)$$

iff $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} \frac{1}{2}t & t & -2s \\ s & u & v \end{pmatrix}$
iff $\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = t \begin{pmatrix} \frac{1}{2}t & 0 \\ s & 0 & 0 \end{pmatrix} + s \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$
 $+ u \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} + s \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$
where t , s , u , v can be any real #s.
Let $\begin{cases} (\frac{1}{2}t^{0}) \\ s = \\ (\frac{1}{2}t^{0}) \\ (\frac{1}{2}t^{0}t^{0}) \\ (\frac{1}{2}t^{0}) \\ ($

(iii) From problem 6(a), T is I-1
iff dim (N(TI) = 0.
Since dim (N(TI) = 4 we know that T
is not I-1.
(iv) By the rank-nullity theorem
dim (
$$M_{2,3}(R)$$
) = dim (N(TI) + dim (R(TI))
So₂ G = 4 + dim (R(TI).
So₂ G = 4 + dim (R(TI).
Thus, dim (R(T)) = 2
(v) R(T) is dimension 2
(v) R(T) is dimension 2
(v) R(T) is dimension 4.
M_{2,2} (R) has dimension 4.
M_{2,2} (R) has dimension 4.
Thus, R(T) = M_{2,2} (R)
Thus, R(T) = M_{2,2} (R)
So₂ T is not unto.
 $T = \frac{R(T)}{R(T)} = \frac{R(T)}{R(T)}$

(vi)
Claim: Let
$$S = \left\{ \begin{pmatrix} m & n \\ o & o \end{pmatrix} \middle| m, n \in \mathbb{R} \right\}$$

Then, $R(T) = S$.
Pf: First note that
 $T\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} 2a - b & c + 2d \\ o & o \end{pmatrix} \in S$.
So, $R(T) \leq S$.
Let $\begin{pmatrix} m & n \\ o & o \end{pmatrix} \in S$
Set $a = \frac{1}{2}m, b = 0, c = n, d = 0, e = 0, f = 0$.
Then, $T\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = T\begin{pmatrix} m/2 & 0 & n \\ o & o & o \end{pmatrix}$
 $= \begin{pmatrix} 2 \begin{pmatrix} m/2 \\ o & 0 \end{pmatrix} = \begin{pmatrix} m & n \\ o & o \end{pmatrix}$
So, $S \leq R(T)$.
 $M_{3,2}(R)$
 $M_{2,2}(R)$

 $\Im(\gamma)$

T is linear
Let
$$f_1 = a + b \times + c \times^2$$
, $f_2 = d + e \times + f \times^2 \in P_2(\mathbb{R})$
and $\swarrow, \beta \in \mathbb{R}$.

Then,

$$T(\alpha f_{1} + \alpha f_{2}) = T(\alpha a + \alpha b x + \alpha c x^{2} + \beta d + \beta e x + \beta f x^{2})$$

$$= T((\alpha a + \beta d) + (\alpha b + \beta e) x + (\alpha c + \beta f) x^{2})$$

$$= (\alpha a + \beta d) + (\alpha b + \beta e) x^{3}$$

$$= (\alpha a + \beta d) + (\beta d + \beta e x^{3})$$

$$= (\alpha a + \beta x^{3}) + (\beta d + \beta e x^{3})$$

$$= \alpha (a + b x^{3}) + \beta (d + e x^{3})$$

$$= \alpha T(a + b x + c x^{2}) + \beta T(d + e x + f x^{2})$$

$$= \alpha T(f_{1}) + \beta T(f_{2})$$

(i)
$$a+bx+cx^{2} \in N(T)$$

iff $T(a+bx+cx^{2}) = O+Ox+Ox^{2}+Ox^{3}$
iff $a+bx^{3} = O+Ox+Ox^{2}+Ox^{3}$
iff $a+bx^{3} = O+Ox+Ox^{2}+Ox^{3}$

Thus,

$$N(T) = \{ \{ cx^2 \} \} \in \mathbb{R} \} = \operatorname{span} (\{ x^2 \} \})$$

Thus, $B = \{ x^2 \}$ is a basis for $N(T)$.
(ii) By part i, dim $(N(T)) = |$
(iii) By HW problem Ga,
 T is $|-|$ iff dim $(N(T)) = 0$.
Since this isn't the case
 T is $N = |-|$.

(iv) By the rank-nullity theorem

$$dim(P_2(\mathbb{R})) = dim(N(\tau)) + dim(R(\tau))$$

So, $3 = 1 + dim(R(\tau))$.
So, $dim(R(\tau)) = 2$

(v)
$$P_2(\mathbb{R})$$
 $P_3(\mathbb{R}) \in \dim = 4$
Since $R(T)$ is 2-dimensional and sits
inside a 4-dimensional space $P_3(\mathbb{R})$
We have $R(T) \neq P_3(\mathbb{R})$
So, T is not onto.
(vi) $R(T) = \sum a + bx^3 \mid a, b \in \mathbb{R}^3$
 $= \operatorname{Span}(\sum l, x^3)$
So, $\sum l, x^3$ is a basis for $R(T)$.

3)
Let
$$f,g \in C(\mathbb{R})$$
 and $\alpha, \beta \in \mathbb{R}$.
Then,
 $T(\alpha f + \beta g) = \int_{a}^{b} (\alpha f(t) + \beta g(t)) dt$
 $= \alpha \int_{a}^{b} f(t) dt + \beta \int_{a}^{b} g(t) dt$
 $= \alpha T(f) + \beta T(g).$

$$\begin{aligned} &(4)(\alpha) \\ &L_{A}(x) = \begin{pmatrix} 1 & \pi \\ \frac{1}{2} & -10 \end{pmatrix} \begin{pmatrix} 17 \\ -5 \end{pmatrix} = \begin{pmatrix} 17 - 5\pi \\ \frac{17}{2} + 50 \end{pmatrix} = \begin{pmatrix} 17 - 5\pi \\ \frac{117}{2} \end{pmatrix} \end{aligned}$$

$$(L)
L_A(x) = \begin{pmatrix} -\lambda & 1 & 0 \\ 1+\lambda & 0 & -1 \end{pmatrix} \begin{pmatrix} -2\lambda & 4 \\ 4 \\ 1.57 \end{pmatrix}
= \begin{pmatrix} -\lambda(-2\lambda) + 4 + 0 \\ (1+\lambda)(-2\lambda) + 0 - 1.57 \end{pmatrix}
= \begin{pmatrix} Z \\ -2\lambda + 2 - 1.57 \end{pmatrix}
= \begin{pmatrix} Z \\ 0.43 - 2\lambda \end{pmatrix}$$

(5) Let
$$T: V \rightarrow W$$
 be a linear transformation
Let $V_{1}, V_{2}, ..., V_{n} \in V$ and $V = \text{Span}(\{V_{1}, V_{2}, ..., V_{n}\})$
Let $S = \text{Span}(\{T(V_{1}), T(V_{2}), ..., T(V_{n})\})$
We want to show that $S = R(T)$

We break the proof into two parts. Claim 1: First we show that $S \subseteq R(T)$. Let yes. A we will show this implies that yer(T). Thats Then, $y \in \text{Span}(\{T(v_1), T(v_2), \dots, T(v_n)\})$ So there exist scalars $c_1, c_2, \ldots, c_n \in F$ where $y = c_1 T(v_1) + c_2 T(v_2) + \cdots + c_n T(v_n)$

(her) $y = c_1 T(v_1 + c_2 T(v_2) + \dots + c_n T(v_n))$ $= T(c_1V_1 + c_2V_2 + \dots + c_nV_n) = T(v)$ Where $V = C_1 V_1 + C_2 V_2 + \dots + C_n V_n$ because transformation is a linea Because VI, V2, ..., Vn are in V we know that $V = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$ is in V. Thus, $y = T(y) \in R(\tau)$. Recall R(TI= {T(x) | x EV} So, we have shown claim I, SER(T)

Claim 2:
$$R(T) \subseteq S$$

Let $y \in R(T)$.
Then by the definition of $R(T)$ we know
that $y = T(x)$ where $x \in V$.
Since $x \in V$ and $V = \text{span}(\tilde{v}_{V_1} V_{2}, ..., V_n^3)$
Since $x \in V$ and $V = \text{span}(\tilde{v}_{V_1} V_{2}, ..., V_n^3)$
we know that there exist $c_{1, C_2, ..., r} C_n \in F$
where $x = c_1 V_1 + c_2 V_2 + ... + c_n V_n$.
Then,
 $y = T(x) = T(c_1 V_1 + ... + c_n V_n)$
 $= c_1 T(V_1) + c_2 T(V_2) + ... + c_n T(V_n)$
So, $y \in \text{span}(\tilde{v}_{1,1}), T(V_2), ..., T(V_n)^2)$
this is S
So $y \in S$.
Thus, $R(T) \leq S$.
So we have shown claim 2
is true.
By claim 1 and claim 2
We have that $R(T) = S$.

6 (a) We want to prove the following:
T is one-to-one iff
$$N(T) = \{0_V\}$$

(=) Suppose that T is one-to-one.
We will show that this implies that $N(T) = \{0_V\}$
Because T is a linear transformation by
a theorem in class (and in this HW)
we know that $T(0_V) = 0_W$.
Thus, $0_V \in N(T)$
Soj $\{0_V\} \leq N(T)$.
Why are these two
rets equal?
Suppose $x \in N(T)$
Then $T(x) = 0_W$.
But $0_W = T(0_V)$.
Thus, $T(x) = 0_W = T(0_V)$.
By T is one-to-one and so since $T(x) = T(0_V)$
We know that $x = 0_V$.

We have shown that if
$$x \in N(T)$$
, then
Thus, $N(T) \subseteq \{0_{V}\}$.
Since $\{20_{V}\} \subseteq N(T)$ and $N(T) \subseteq \{0_{V}\}$
We know that $N(T) = \{0_{V}\}$.
((1)) Suppose that $N(T) = \{0_{V}\}$.
((1)) Suppose that $N(T) = \{0_{V}\}$.
Let's show that this implies that
T is one-to-one.
Suppose that $T(x) = T(y)$ where $x, y \in V$.
We must show that this implies that
 $x = y$ to show that T is one-to-one.
Since $T(x) = T(y)$ we have that $T(x) - T(y) = 0$
Thus, $T(x-y) = 0$, since T is linear
So, $x - y \in N(T)$.
Thus, $x - y = 0_{V}$.
So, $x = y$.
The above asgument shows that if $N(T) = \{0_{V}\}$.

Thus,
$$dim(N(T)) = 0$$
.
So, $N(T) = \{0, 3\}$.
Thus, by problem $G(a)$, T is one-to-one.

$$\begin{aligned} \widehat{\varphi}(a) \quad \left[\text{Method } 1 \right] \\ \text{Suppose that } \dim(V) < \dim(\omega), \\ \text{Thens} \\ \dim(R(\tau)) \leq \dim(N(\tau)) + \dim(R(\tau)) \\ \leq \dim(V) \quad (\operatorname{rank-nullity thm}) \\ < \dim(W) \end{aligned}$$

$$\begin{aligned} \text{Thus}_{i} = (a(\tau)) \leq \dim(\omega), \end{aligned}$$

dim
$$(R(T)) < dim(u)$$
 we must
dim $(R(T)) < dim(w)$ we must
have $R(T) \neq W$.
Thus, T is
not onto.

$$\widehat{\bigoplus}(n) \quad (Method 2] \\ Let's prove the contrapositive: "IF T is onto, then dim (V) \ge dim (W)"
 Suppose T is onto.
 Then, $R(\tau) = W$.
 Then, $dim(R(\tau)) = dim(W)$.
 Thus, $rank-nullits$ thm
 dim (V) $= dim(N(\tau)) + dim(R(\tau))$
 $= dim(N(\tau)) + dim(R(\tau))$
 $= dim(W)$.
 Thus, $dim(V) \ge dim(W)$.
 Thus, $dim(V) \ge dim(W)$.$$

$$\widehat{F}(b)$$
Let's prove the contrapositive:
"If T is one-to-one, then dim(V) ≤ dim(W)."
Suppose T is one-to-one.
Then by problem 6(a) we know that
 $N(T) = \{o_V\}$ and so dim(N(T)) = 0.
Because R(T) is a subspace of W
We know that dim (R(T)) ≤ dim(W).
Thus,
 $M(T) = dim(N(T)) + dim(R(T))$
 $= 0 + dim(R(T))$
 $= dim(R(T))$
 $= dim(R(T))$
 $\leq dim(W).$
So, dim(V) ≤ dim(W).