Math 4740 1/29/25

Example of making a probability space

Let's make a probability Space for rolling a 4-sided -2 2-4 gie. The "sample space" of all possible outcomes will be $S = \{1, 2, 3, 4\}$ The set of "events" in this case will be the set of all subsets of S.

 $\int \underbrace{Umega}_{n} \left\{ \sum_{i=1}^{n} \phi_{i} \left\{ i, i \right\}_{i} \left\{ 2 \right\}_{i} \left\{ 3 \right\}_{i} \left\{ 4 \right\}_{i} \right\}_{i} \right\}$

Let's assume each side of
the die is equally likely.
First define

$$P(\phi) = O$$

Now assign the values of P
on the events of size 1.
 $P(\{z_i\}) = \frac{1}{4}$ (note
 $P(\{z_$

$$P(\{1,4\}) = P(\{1\}) + P(\{2\})$$

= $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

 $P(\{1,2,3\}) = P(\{1,3\}) + P(\{2\}) + P(\{2$

 $P(S) = P(\xi_{1,2,3,4})$ $= P(\{1\}|+P(\{2\})+P(\{3\})+P(\{4\})$ $= \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$

Vef: A probability space consists of two sets and a $function (S, \Omega, P).$ S is called the sample space of the experiment. The elements of S are called the outcomes of the experiment, Dis a set whose elements are subsets of S. The elements of <u>R</u> are called events. P: I > IR is a function that assigns to each Ein A a probability P(E). Furthermore, the following

sequence of events from IL that are pair-wise disjoint <u>means</u>: $E_{j} \cap E_{j} = \phi$ if $i \neq j$ 七2 then $\bigcup_{\overline{L}} E_{\overline{L}} = \sum_{\overline{L}} P(E_{\overline{L}})$ $P(E_1 \vee E_2 \vee E_3 \vee \cdots) = P(E_1) + P(E_2)$ $+ P(E_3) + \cdots$ END OF DEF

I think this def is bused on the work of Andrey Kolmogorov 1930s

Kemark: A set I satisfying D,2,3) above is called a J-algebra or J-field

How to define a probability
Space when S is finite
Suppose S is a finite sample space.
Define
$$\Omega$$
 to be the set of
all subsets of S.
For each outcome w in S

For each outcome
$$\omega$$
 in n_{i}
pick a real number n_{i}
with $0 \le n_{w} \le 1$ and
define $P(\le w_{i}) = n_{w}$

$$E_{X}: S = \{2, 2, 3, 4\}$$

$$P(\{1\}) = \frac{1}{4} = n_{1}$$

$$P(\{2\}) = \frac{1}{4} = n_{2}$$

$$P(\{2\}) = \frac{1}{4} = n_{3}$$

$$P(\{3\}) = \frac{1}{4} = n_{4}$$

At the same time pick the NUMBERS So that In our example $\sum n_{\omega} = 1$ $n_1 + n_2 + n_3 + n_4$ WES means sum. over all win S all of Now extend P to Las follows: $Tf \in \{ \mathcal{W}_1, \mathcal{W}_2, \dots, \mathcal{W}_r \}$ is an event, define $P(E) = \sum P(\xi w_{i} \xi)$ $= P(\{w_{1}\}) + P(\{w_{2}\}) + \dots + P(\{w_{r}\})$ $E_{X}: P(\xi_{1}, \xi_{2}) = P(\xi_{1}, \xi_{2}) + P(\xi_{2}, \xi_{2})$

If
$$E = \phi$$
, define
 $P(\phi) = 0$.
Theorem: The above
Construction creates a
probability space
Proof: See online notes