Math 4740 3/10/24

EX: Suppose you flip a roin three times. For every head lose \$1. For every fail YUN win \$2. Let X be Yun the amount won or lost. (T,T,T)(H,T,T) $(T, H, T)^{-1}$ (T,T,H)(T,H,H)(H,T,H)a \sim (H,H,T)(H, H, H).~

The expected value is: $E[X] = (\$6)(\frac{1}{8}) + (\$3)(\frac{3}{8})$ $+(\$0)(\frac{3}{8})+(-\$3)(\frac{1}{8})$ $= \frac{1}{8} \frac{12}{8} = \frac{11.5}{8}$ You play this game many times If

on average you expect to win \$1.50 per game.

What's the probability you win Something when you play? P(X>0) = P(X=3) + P(X=6) $= \frac{3}{8} + \frac{1}{8} = \frac{1}{2} = 0.5$

If you played this game 1,000,000 times you'd expect to win around (1,000,000) (\$1.5) = \$1,500,000 ELXJ

Odds Let E be an event Define "odds against $E'' = \frac{P(\overline{E})}{P(E)} = \frac{1 - P(E)}{P(E)}$ This is what casinos quote when they talk about odds payouts Ex: Suppose you roll a 4-sided die. Let E be the event that a 4 is rolled. 3:1 < This is Written

P9.(49 green 0 red 32,19,21,25, 34,27,36,30, 20 S 23,5,16,1, 3 EUROPEAN 14,9,18,7 60 24 12,3 26 black 5 15, 4, 2, 17 0 10 32 6, 13, 11,8 10,24,33,20 15 0 31,22,29,28 9 \$ 35,26 1 Totals: 1 green 2 EL 8 red (5 11 34 9 18 black = 37 total green 5 0,00 <u>red</u> 27,25,12,19 22 15 3 2 18,21,16,23 3 3 14, 9, 30,7 3 3 32,5,34,3 200

		-		
	_	0	$) \top ($	00
1		1	2	3
18	1st 12	4	5	6
EV		7	8	9
EN		10	11	12
	2nd 12	13	14	15
		16	17	18
III		19	20	210
CK		22	23	24
2	F 3rd 12	25	26	27
B		28	29	
19 t		31	32	33
K.		34	35	36
		2 to 1	2G1	2 to 1

Casino payouts Type of Bets And Winding Chances

		Inside bets
Bet Name	Ex	Numbers to bet on
Straight up	A	30
So lit Bet	B	11 or 14
Street Bet	С	19, 20, 21
Corner	D	25, 26, 28, 29
Five Numbers	E	0, 00, 1, 2, 3
Line Bet	F	4, 5, 6, 7, 8, 9

Outside Bets

Bet Name	Ex	Numbers to bet on
Column	G	Set of column numbers
Dozen	H	25 through 36
Red or Black	I	Red numbers
Evenor Odd	J	Odd numbers
Low or High	K	19 through 36

American version / Handout

Payout 35:1 17:1 11:1 8:1 6:1 5:1

True odds 37:1 36:2 35:3 34:4 32:6

True odds 26:12 26:12 20:18 20:18 20:18

Sample space of Roulette $S = \{0, 00, 1, 2, 3, 4, 5, 6,$ 7,8,9,10,11,12,13, [4, 15, 16, 17, 18, 19, 20]21,22,23,24,25,26, 27,28,29,30,31,32, 33, 34, 35, 369

green = 2 of them red = 18 of them black = 18 of them

Euch # equally likely /38 with probability

Straight up bet (35:1 payout)
Let's say we bet \$\$1 on 7
What's the expected value
of this bet?
Let X be the amount won/bst

$$X(w) = \int $$35$$
 if $w = 7$

So on average with many of these bets you'd lose - 5,26¢ per spin. You'd lose 5,26% of your bet each time on average The casino pays less than the "I true odds" or "odds against". What's the true udds here? Let $E = \frac{2}{7}$ $\begin{array}{l} \text{odds} \\ \text{against} = \frac{P(E)}{P(E)} = \frac{37/38}{1/38} = \frac{37}{1} \\ E \end{array}$ 37:1

What would the expected value be if they puid 37:1 if you win? It would be:

 $\left(\ddagger37\right)\left(\frac{1}{38}\right) + \left(-\ddagger1\right)\left(\frac{37}{38}\right) = \ddagger0$ On average you'd break even over the long run. The to win lose to

Red bet (payout is 1:1) Suppose you bet \$\$1 on red. What's the expected value? What's the $\left(\ddagger 1\right)\left(\frac{18}{38}\right) + \left(-\ddagger 1\right)\left(\frac{20}{38}\right)$ win lose

$$= - \# \frac{2}{38} \approx - \# 0.0526$$
$$\approx -5.264$$

On the side:

$$P(win) = \frac{18}{38} \approx 0.47$$

 $P(lose) = \frac{20}{38} \approx 0.53$

What are the true odds?

$$E = red \# occurring$$

$$udds = \frac{P(E)}{P(E)} = \frac{29/38}{18/38} = \frac{20}{18} = \frac{10}{9}$$

$$E$$

If they paid you 10:9 on your win what would the expected value be?

 $\left(\$\frac{10}{9}\right)\left(\frac{18}{38}\right) + \left(-\$1\right)\left(\frac{20}{38}\right) = \0 lose win This would make the game "fair"