

Def: Suppose
$$
A_{1}, A_{2}, A_{3}, \ldots
$$

\nare an infinite number of sets.

\nThen,

\n
$$
\bigcap_{\tilde{\lambda}=1} A_{\tilde{\lambda}} = A_{1} \bigcap A_{2} \bigcap A_{3} \bigcap \cdots
$$
\n
$$
\overline{\lambda} = 1
$$
\n
$$
= \left\{ \times \mid \begin{array}{c} \times \text{is in every} \\ \text{one of the } A_{\tilde{\lambda}} \end{array} \right\}
$$

 $\bigcup_{i=1}^{\infty} A_{i} = A_{1} \cup A_{2} \cup A_{3} \cup \cdots$
 $= \left\{ x \mid \begin{matrix} x & \text{is in at least} \\ \text{one of the } A_{i} \end{matrix} \right\}$

Lef: Let ^A and ^B be sets. A <u>function</u> f from A to B , Vnctiun
notated f: A-B B, is ^a role that assigns to each element of ^A a unique element Def: Let A and B be
Sets. A function f from
A to B, notated f: A >B
is a rule that assigns
to each element of B
a vingue element of B
Ex: Let
S = {(H, H), (H, T), (T, T)}
regresent flipping a coin twice.
Let f: S > IR wher of B

Ex: Let $S = \left\{ (H,H), (H,J), (T,H), (T,T) \right\}$ $EX: LET$
 $S = \{(H,H), (H,T), (T,H), (T,T)\}$

represent flipping a coin twice. $\frac{1}{2}$ reprisent flippi > IR where coin twice.
where f
heads occured. counts how many So_J f(H, $H = Z$ $f(T)$ $f(T, H) = 1$ $f(H,T) = 1$ $f(T,T) = 0$

Later in the class, f will be called a class, f will
random variable.

Example of making a probability space $\frac{1}{5}$ X W Suppose we want to model the suppose voe in slling a 4-sided die Let $S = \{1, 2, 3, \}$ ant to model inc
rolling a 4-sided
4 } ^S is called the sample space S is called the sample space of
S is called the sample space of $Let \frac{0mega}{6}$ r_s cancor
all possible outcome
Let $(mega)$
 $\Omega = 54, 813,$ $\{2\}, 23,$ 245
2
3
... $\{1,2\},$ $\{1,3\},$ $\{ |y| \}$ $\{2,3\}$, $\{2,4\}$, ${23,45}$ $\left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\}$ 33, {1,2,4}, {1,3,4}
2 x = 2 422 , $\{2,3,4\}$, $\{1,2,3,4\}$ -2 is the set that contains all the subsets of S.

IL is called the set of events. I contains all the events that we want to be able to measure the probability of. When S is finite (like now) 2 contains all the events t
We want to be able to
measure the probability of
we usually make R consist
we usually make R consist
of all subsets of S. weasure ine lie
we usually make Ω_c
of all subsets of S. do these events mean? What f_S no number $\phi \leftarrow \frac{represents^{nts}}{appeared}$ on the die appeared on the die
appeared on the die when you 2 represents ^a $\{23\}$ occured when you rolled the die represents either ${5,4} <$ $43 <$ represents clinced

When you roll the die t_1 that $\{2,3,4\} \leftarrow$ represen either 2 or ³ or ⁴ occured represents that $\{1, 2, 3, 4\} \leftarrow \begin{matrix} \text{represen} \ \text{pither} \end{matrix}$ $3,43 \leftarrow$ represents
either los 2 or ⁴ occured 3 or Now we make a probability Now we make a proba
function P: $\Omega \rightarrow \mathbb{R}$ Let's assume each side of the die is equally likely. the die is equally likely.
First assign $P(\phi) = 0$

Then assign the probability of each outcome. $P(\{1\}) = \frac{1}{4}$ (these add $P(\{23\}) = \frac{14}{14}$ $P(\{33\}) = \frac{14}{10}$ UP
To
1 $p(\xi 43) = 74$

Now we extend ^P across all of 12 by doing disjoint sums. For example ng
e)

 $P(\{2,4\}) = P(\{2\}) + P(\{4\})$ $=$ $\frac{1}{4} + \frac{1}{4}$ = $\frac{1}{2}$

$$
P(\xi_{1,2,3}) = P(\xi_{1,3}) + P(\xi_{2,3}) + P(\xi_{3,3})
$$

= $\frac{1}{4} + \frac{1}{4} + \frac{1}{4}$
= $\frac{3}{4}$

$$
P(\xi_{1,2,3,4\zeta}) = P(\xi_{1,3}) + P(\xi_{2,3}) + P(\xi_{1,3,3}) + P(\xi_{2,3,3}) + P(\xi_{2,3,3}) + P(\xi_{1,3,3})
$$

= $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$
= 1

Def: ef: A probability space
insists of two sets and
unction (S, S, P). probability space consists of two sets and ^a function (S, D, P). Def: A probability space
Consists of two sets and a
function (S, Ω, P).
S is called the sample space
of our experiment. The elen
of S are called the <u>outcom</u> sample space of our experiment. The elements runction
S is called the sar
of our experiment of S are obability space
f two sets and a
(S, 1, P).
the sample space
periment. The elements
periment. of our experiment.
of S are called the <u>outcomes</u>
of the experiment. of the experiments
I is a set whose elements are a suites The elements of I are called events experin

sets of

bsets of

ments d

P IR . is a function $P : \Omega \longrightarrow \mathbb{R}$ called events.
 $P: \Omega \rightarrow \mathbb{R}$ is a function
where for each E in Ω where for each E in Ω
we get a probability $P(E)$. Furthermore, the following

Properties must hold:
① S is an element of Ω .
① Now want the table to measure $P(S)$
② If E is an event in Ω ,
② If E is an event in Ω .
③ If $E_{1}, E_{2}, E_{3}, ...$
③ If $E_{1}, E_{2}, E_{3}, ...$
③ If $E_{1}, E_{2}, E_{3}, ...$
③ If $E_{2}, E_{3}, ...$
③ If $E_{3}, E_{4}, ...$
③ If $E_{4}, ...$
③ If $E_{5}, ...$
② If $E_{6}, ...$
① If $E_{6}, ...$
④ If $E_{6}, ...$
① If $E_{7}, ...$
① If $E_{8}, ...$
④ If $E_{1}, E_{2}, ...$
③ If $E_{1}, ...$
③ If $E_{1}, ...$
④ If $E_{1}, ...$
④ If $E_{2}, ...$
③ If $E_{3}, ...$
④ If $E_{1}, ...$
① If $E_{1}, ...$
③ If $E_{2}, ...$
④ If $E_{1}, ...$
① If $E_{2}, ...$
① If $E_{1}, ...$

 $(5) P(S) = 1$ (6) If E_1, E_2, E_3, \cdots is a finite or infinite sequence of events from Ω that are pair-wise disjoint $\frac{means}{i}$: E_i $DE_j = \phi$ if $\bar{\mu} \neq \bar{j}$ ie there is no overlap in $\frac{1}{2}$ $+hen$ $P(\bigcup_{i} E_{i}) = \sum_{i} P(E_{i})$ $P(E_{1}UE_{2}UE_{3}U...)=P(E_{1})+P(E_{2})+P(E_{3})+...$ end of deff

This def is based on the
Work of Andrey Kolmogorov
1930s
Remark: A set Ω satisfying
0,0,3 above is called a This def is based on the Work of Andrey Kolmogorov This def is based on the

Work of Andrey Kolmogorov

1930s

Remark: A set 12 satisfying

1930s

Commet: A set 12 satisfying

Talgebra or 5-field

Talgebra or 5-field

Remark: If 12 is a 5-algebra 1930s Pemark: A set IL satisfying \bigcirc , $\frac{max\{k}{2}}$ above is called a σ -algebra This def is based on the
Work of Andrey Kolmogorov
(1930s
Cemart: A set 1 satisfying
(1,2).3 above is called a
T-algebra or T-field
(1,2). Then TEx
(1) If EyEz, E3, ware
in 1, then TEx
is in 1, then TEx or Enfield Remark: $If \Omega$ is a σ -algebra cemair: +, =
une can show that $\overline{e^{l(a)}}$ show
(a) $\phi \in \Omega$ (a) $\phi \in \Omega$
(b) If EyEz, $E_{2,5}E_{3,111}$ are
then DE_{x} $\frac{1}{i}n$ $\frac{1}{i}$ $\frac{1}{2}$ $\begin{array}{ccc}\n\Gamma & F & F \\
\Gamma & \Gamma & \Gamma\n\end{array}$ This def is based on the

Work of Andrey Kolmogorov

1930s

<u>Remart:</u> A set Ω satisfying

1930s

Concert: A set Ω satisfying

1930s

Concert: A set Ω satisfying

1930s

Concert: Experiment

Concert: If Ω is a Look at online notes for proof.

How to construct a probability
space when S is finite
space.
Suppose S is a finite sample
space.
Define Ω to be the set
of all subsets of S.
For each outcome ω in S
For each outcome ω in S
pick a real number $0 \le$ How to construct a probability space when ^S is finite Suppose ^S is ^a finite sample space . space.
Define 12 to be the set pose S is a timite sam:
Ree.
Gine _D to be the se
of <u>all</u> subsets of S. w in ^S For each outcome pick ^a $vert_0$ utcome come and define $P(\{\omega\}) = n_{\omega}$ How to construct a probability

space when S is finite

space.

Suppose S is a finite sample

space.

Define D to be the set

of all subsets of S.

For each outcome w in S

For each outcome w in S

For each outcome w in S

EX : $\frac{EX}{S} = \{1\}$ 2, 3, 4 J $P(\{1\}) = \frac{1}{4} = n_1$ $P(\{3\}) = \frac{1}{4} = n_3$ $P(\{z\}) = |\qquad| q = n_z$ $P(\Sigma 43) = V_4 = Ny$

At the same time pick the
\nnumbers so that
\n
$$
\sum_{w\in S} P(\overline{\{w\}}) = 1 \quad \boxed{\begin{array}{l} EX \text{ above} \\ D_1 + D_2 + D_3 + D_4 \\ D_1 + D_2 + D_3 + D_4 \\ D_2 + D_4 + D_5 + D_6 \end{array}} = \frac{1}{t} + \frac{1}{
$$

 $If E =$ ϕ , define $P(\phi) = 0$. If $E = \phi_j$, define $P(\phi) = 0$.
Theorem: The above construction
is a probability space.
See prout in notes. Theorem: The above construction heorem: The above a
is a probability space. If $E = \phi_1$ define $P(\phi) = 0$.
Theorem: The above construction
is a probability space.
See prout in notes. ility spu
ility spu
in notes