5680
HW 2
Solutions

Then

$$
\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} f_n(s) = \lim_{n\to\infty} 0 = 0 = f(0).
$$

So,
$$
f_n(0)
$$
 converges to $f(0)$.

Case 2: Suppose that
$$
x < 0
$$
.

\nLet 570 , $x < -\frac{1}{N}$

\n $x < -\frac{1}{N}$

\nThen if $n \ge N$ we have that $x < -\frac{1}{N} \le -1$

\nand s_0 $f_n(x) = 1$ for $n \ge N$.

\nThus, if $n \ge N$ then $f_n(x) = 1 - (-1) = 0 < 5$.

\n $f_n(x) = f(x) = 1 - (-1) = 0 < 5$.

$$
\int_{0}^{\infty} \lim_{h \to \infty} f_n(x) = -1 = f(x).
$$
\n
\nCase 3: Suppose that x >0.
\nLet £70.
\nPick an N7! where
\n $\frac{1}{N} < X$.
\nThen if n7N,
\nthen
\n $\frac{1}{N} \leq \frac{1}{N} < X$.
\n $\frac{1}{N} \leq \frac{1}{N} < X$.
\n $\frac{1}{N} \leq \frac{1}{N} < X$.
\n $f_n(x) = 1$.
\n $f_n(x) = 1$.
\nThus, if n7N, then
\n $\int_{0}^{x} f_n(x) dx = 1 = f(x)$.
\nSo, $\lim_{x \to \infty} f_n(x) = 1 = f(x)$.

Combining the three cases We see that for any fixed $x \in \mathbb{R}$ we have that $\lim_{n\to\infty} f_n(x) = f(x)$ $n \rightarrow \infty$ Thus, f_n converges pointwise to f $on A = \mathbb{R}$.

(2) (Method 1 - by definition)

Let $f_o(z) = 0$ for all $z \in D(0; c)$. Let 270. Then, if $z \in D(o; r)$ then $\left| \int_{\Gamma} (z) - \int_0 (z) \right| = \left| \frac{z^3}{n^2} - 0 \right|$ $=\left|\frac{z^{3}}{n^{2}}\right|=\frac{|z|^{3}}{n^{2}}\leq \frac{n^{3}}{n^{2}}$ We need $\frac{r^3}{n^2} < \epsilon$. $\frac{2\epsilon D(o,r)}{r^2}$ Note that $\frac{r^3}{n^2}<\epsilon$ iff $\frac{r^3}{\epsilon}< n^2$ $\frac{1}{\sqrt{1-\frac{1}{2}}}$

Let $N > \sqrt{\frac{\Gamma^3}{c}}$. Then if $n \ge N > \sqrt{\frac{r^3}{5}}$ we have $|f_{n}(z)-f_{0}(z)|<\frac{r^{3}}{n^{2}}<\epsilon$ for all $z \in D(0; r).$ Thus, $f_{n} \rightarrow f_{o}$ Uniformly on D(O;r).

 $MethodZ
Let ZED(o;r),$ Then $|Z| < \Gamma \cdot \frac{3}{12^{3}}|Z|^{3} < \Gamma \cdot \frac{3}{12^{3}}$ S_{0} , $|f_{n}(z)| =$ $=$ $\left| \frac{z}{n^2} \right|$ = $=\frac{|z|^3}{n^2}<\frac{r^3}{n^2}$ S_{0} $1f_{n}^{2}z11 =$ Then $\sum_{n=1}^{\infty} M_{n}$ = $\frac{v}{\sqrt{3}}\sum_{n=1}^{\infty}\frac{1}{n^{2}}$ which $\overline{\overline{n}}$ = 1 n = $\frac{1}{2}$ $\boldsymbol{\infty}$ convages since its a $p=2$ series. By the Weierstrass M-Test, $\sum_{n=1}^{\infty} f_n(z)$ Converges uniformly on D(o;r). $convergeo$ $vnr.$ $\pm 6.$ the sequence By HW 2 #6, $(f_n)_{n=1}^{\infty}$ converges uniformly to the , I'me . sq.
uniformly to the zero function on D(OJC).

(b) Let
$$
0 \le r < 1
$$
.
\nLet $9_n(2) = \frac{2}{n} \int_{n=1}^{n} s_0$
\n $+h_0 + \sum_{n=1}^{\infty} \frac{2}{n} = \sum_{n=1}^{\infty} 9_n(2)$.
\nLet's *ure* the Weierstrass
\n $\frac{3}{10}$
\nLet $2 \in A_r$
\nThen $|2| \le r$ and 50
\n $|9_n(z)| = |\frac{2}{n}| = |\frac{2}{n}|^n \le \frac{r^n}{n}$.

Let
$$
M_n = \frac{r^n}{n}
$$
.
\nThen, $|g_n(z)| \le M_n$ for all $z \in A_r$.
\n(iii) Note that $\frac{r^n}{n} \le r^n$ for $n \ge 1$.
\nAlso since $0 \le r < 1$, the geometric
\nseries $\sum_{n=1}^{\infty} r^n$ converges.
\nThus, by the comparison test,
\n $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{r^n}{n}$

Converges.

Thus, the conditions (2) 4 (ii) 0, the
Weierstrass M-Test hold on Ar.
So,
$$
\sum_{n=1}^{\infty} g_n(z) = \sum_{n=1}^{\infty} \frac{z^n}{n}
$$
 converges absolutely
on Ar when $0 \le r \le l$.

(4) We use the analytic convergence theorem.

\nLet
$$
A = \{z \mid |z| > 1\}
$$
.

\nLet D be a closed disk in A .

\nWe will show that $\sum_{n=1}^{n} \frac{1}{z^n}$.

\nConverges uniformly on D .

\nWe have the weights of A and A is the weights of A .

\nLet z_0 be the coefficients of P and P .

\nLet z_0 be the radius of D . So, $p = \{z \mid z - 1\}$.

\nLet z_0 be the radius of D . So, $p = \{z \mid z - 2\}$.

\nLet $S = |z_0| - r$. [See *picture*]

\nNote that $S = |z_0| - r$. [See *picture*]

\nNote that $S = |z_0| - r$. [See *picture*]

 $Clain: IFZED, then |Z|Z5.$ proof of claim: Let ZED. Then, $|z-z_0| \le r$. Thus, $|z_{\circ}|$ = $= |z - z + z|$ $\overline{\mathcal{L}}$ $= |Z_{s} - Z| +$
 $\leq |Z_{0} - Z| +$ 1z) $= |(-1)(z-z_0)|+|z|$ $=$ $|-1|1z$ zo) ⁺(z) $= |2 - 20 + 2|$
= $|2 - 20 + 2|$ $5 + |7|$ T_{phys} $|z_{0}| \leq r + 1$ 121. S_{p} , $|z| > |z_{0}| - r = S$. $S = S$. Therefore, if ZED , then $|z|z\delta$. $\begin{aligned}\n\begin{vmatrix}\nz - 2 + 2 \\
0 - 2\n\end{vmatrix} + |z| \\
\begin{vmatrix}\n-1 & 2 - 20 \\
-1 & 2\n\end{vmatrix} + |z| \\
\begin{vmatrix}\n-1 & 2 - 20 \\
1 & 2\n\end{vmatrix} + |z| \\
\begin{vmatrix}\nz - 2 & 1\n\end{vmatrix} + |z| \\
\begin{vmatrix}\nz - 2 & 1\n\end{$ $\frac{5}{\sqrt{\frac{C}{\ln^5 m}}}}$ So, if zeD , then $|g_{n}(z)| = \left|\frac{1}{z^{n}}\right| = \frac{1}{|z|^{n}} \le \frac{1}{s^{n}} = \left(\frac{1}{s}\right)^{n}$ $z \in D$, then $|z| \ge 5$.
 $z \in D$, then $|z| \ge 5$.
 $\frac{1}{z^{n}}|z| = \frac{1}{|z|^{n}} \le \frac{1}{s^{n}} = \left(\frac{1}{s}\right)^{n}$

Let
$$
M_n = \left(\frac{1}{\delta}\right)^n
$$
,
\n $S_{p,1} + 2 \in D$, then $|g_n(z)| \le M_n$.
\nAlso, since $S_{>1}$ we know $\frac{1}{\delta} < 1$.
\n $S_{p,2} = M_n = \sum_{n=1}^{\infty} \left(\frac{1}{\delta}\right)^n$ is a convergent.
\ngewectri's series.
\ngewectri's series.
\n $\frac{1}{\delta} \int_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \left(\frac{1}{\delta}\right)^n$ is a convergent.
\nThus, by the Weierstrass M-Test,
\n $\sum_{n=1}^{\infty} g_n(z) = \sum_{n=1}^{\infty} \frac{1}{z^n}$ converges uniformly on D.
\n $g(z)$ is an analytic function on A.
\ng(z) is an analytic function on A.
\n $g'(z) = \sum_{n=1}^{\infty} g'_n(z) = \sum_{n=1}^{\infty} \left(\frac{z^n}{z^n}\right)^r = \sum_{n=1}^{\infty} \frac{1}{z^{n+1}}$
\n $= -\sum_{n=1}^{\infty} \frac{1}{z^{n+1}}$

⑤ Le + $g(z)$ = $=\sum_{n=1}^{\infty}\frac{1}{n!z^{n}}$ $A = \mathbb{C} - \{0\}$ (a) Show ^g is analytic on ^A (b) Find ^a formula for y'on A. (b) Fi We use the analytic convergence theorem. LetD be ^a closed disc in A. Proof: We use the
Analytic convergence theorem.
Let D he a closed disc
Let D have center Zo and Let D have center Zo and
radius r. S_{0} , $D = \{z | |z-z_{0}| \leq r\}$

 $|e+$ $S=\vert z_{0}\vert-r>0$

Claim: If

ZED, then

IZIZS. ZED, then $|Z| \geq 8.$ $\frac{\angle |a,m: \text{If}}{Z \in D, \text{ then}}$
 $|Z| \geq S.$

pf of claim: Let $Z \in D$. Then, $|Z-Z_0|\leq C$. Thus, $|20| = |20 - 2 + 2|$ $\leq |z_{0} - z| + |z|$ $=|z \frac{1}{20}$ + |Z| = \leq |Z₀-
= |Z⁰
= r + 1z).

So,
$$
|\overline{z}_{0}|-r \leq |\overline{z}|
$$
.
\nThus, $S \leq |\overline{z}|$.
\n $\frac{1}{n\sqrt{2n}} \leq |\overline{z}|$.
\n $|\overline{z}_{0}| \geq \sqrt{2n}$
\n $|\overline{z}_{0}| \geq \sqrt{2n}$
\n $|\overline{z}_{0}| \geq \sqrt{2n}$
\n $|\overline{z}_{0}|$.
\n $|\overline{z}_{0}|$.
\n $|\overline{z}_{0}|$.
\n $|\overline{z}_{0}|$.
\nLet $M_{n} = \frac{1}{n!} \frac{1}{n!} \sum_{n=1}^{n} \frac{1}{n!} \sum_{n=1}^{$

$$
\begin{array}{c}\n\left[\begin{array}{c}\n\text{in } \mathbb{R} \\
\text{in } \mathbb{R}\n\end{array}\right] = \left[\begin{array}{c}\n\text{in } \mathbb{R} \\
\text{in } \mathbb{R}\n\end{array}\right] = \left[\begin{array}{c}\n\text{in } \mathbb{R} \\
\text{in } \mathbb{R}\n\end{array}\right] = \left[\begin{array}{c}\n\text{in } \mathbb{R} \\
\text{in } \mathbb{R}\n\end{array}\right] \\
\frac{1}{\sqrt{1 - \frac{1}{n}}}\n\end{array}
$$
\n
$$
= \lim_{n \to \infty} \left|\frac{n!}{\sqrt{1 + 1!}} \cdot \frac{1}{\sqrt{2}}\right| = \lim_{n \to \infty} \left|\frac{1}{\sqrt{1 + 1} \sqrt{2}}\right|
$$
\n
$$
= \lim_{n \to \infty} \left|\frac{1}{\sqrt{1 + 1}}\right| = \lim_{n \to \infty} \left|\frac{1}{\sqrt{1 + 1} \sqrt{2}}\right|
$$

Since
$$
0 < I_y
$$
 by the ratio t is
\n $\sum_{n=1}^{\infty} M_n = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{8^n}$ converges

By the Weierstrass M-fest
The series
$$
\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{n=1}^{n}
$$
 converges
Writing (and absolutely) on D.

By the analytic convergence theorem (a) $g(z) = \sum_{n=1}^{\infty} \frac{1}{n!} \cdot \frac{1}{z^n}$ is $analytic on A_j$ and (b) if $\overline{z} \in A$, then
 $g'(z) = \sum_{n=1}^{\infty} \left(\frac{1}{n!} \frac{1}{z^n}\right)^1$ $\left(\frac{z^{-n}}{z^{-n-1}}\right)^1$ $=\sum_{n=1}^{\infty}\frac{-n}{n!}\cdot\frac{1}{z^{n+1}}$ $= - \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \frac{1}{z^{n+1}}$

6 (Method 1)

\nSuppose that
$$
\sum_{k=1}^{n} g_k(z)
$$
 converges

\nuniformly on some subset $A \subseteq \mathbb{C}$.

\nLet ε 70.

\nBy the Cauchy criterion, there exists for $N > 0$ so that if $n \geq N$ and $z \in A$ then

\n $|X \geq 0$, $\{z\}$ and $z \in A$ then

\nFor $p = 1, 2, 3, 4, \ldots$

\nTake $p = 1$ to get that if $m \geq N$.

\nTake $p = 1$ to get that if $m \geq N$.

\nTake $p = 1$ to get that if $m \geq N$.

\nEach $2 \in \mathbb{C}$ and $z \in A$ then $2 \in \mathbb{C}$ and $z \in A$ and $z \in A$ then $2 \in \mathbb{C}$ and $z \in A$ and $z \in A$ and $z \in A$ and $z \in \mathbb{C}$ and $z \in \mathbb{C}$.

\nThen, if $n \geq N$ and <math display="</p>

$$
Insumming, if n \geq N and z \in A
$$

then
$$
|g_n(z) - f_n(z)| \leq E
$$

 $S₉$ (9.) converges to $f₀$ vaithinly.

(Method 2 is on the next page)

 \circledS (Method 2) a Suppose that $\sum_{k=1}^{n} g_k(z)$ converges uniformly Suppose that $k=1$
on $A\subseteq\mathbb{C}$. Prove that the requence $(g_k)_{k=1}^{\infty}$ on $A = 4$. Move .
Converges uniformly to the zero function f_0 on A. on
Cor
(fo: $A \rightarrow C$, $f(z)=0$ $\forall z \in A$ $\frac{10}{\text{prob}}$: Let 200 . Let $S(2) = \sum_{k=1}^{5} 9_k(2)$. Let $S_n(z) =$ $=\sum_{k=0}^{n} g_{k}(z)$ be the n-th partial k = $-9k^{(z)}$ be the $\sum_{sym}^{n} 9k^{(z)}$. |
|
|
|
| $\frac{1}{2}$ Since $\sum_{k=1}^{n} g_k(z)$ converges uniformly on A, There $\begin{array}{l} \sum_{k=1}^{\infty} g_k(z) \text{ converges uniformly on } z \\ \text{there exists} \quad N > 0 \text{ where } i \in \{1, 2, 1\} \end{array}$ there $exists$ IV/U is \mathcal{E}_{2} for all zeA.
then $|S_n(z)-S(z)| < \mathcal{E}_{2}$ for all zeA. Thus, if n $\geq N+1$ and $z \in A$, then $|9_{n}(z) - 0| = |9_{n}(z)|$ $f_{o}(z)$ \equiv $=$ $\left(\sum_{k=1}^{n} 9_{k}(z) - \sum_{k=1}^{n-1} 9_{k}(z) \right)$ $=|S_{n}(z) - S_{n-1}(z)|$

$$
= |S_{n}(z)-S(z)+S(z)-S_{n-1}(z)|
$$
\n
$$
\leq |S_{n}(z)-S(z)| + |S(z)-S_{n-1}(z)|
$$
\n
$$
\leq |S_{n}(z)-S(z)| + |S(z)-S_{n-1}(z)|
$$
\n
$$
\leq |S_{n}(z)-S(z)| + |S_{n-1}(z)-S(z)|
$$
\n
$$
\leq |S_{n}(z)-S(z)| + |S_{n-1}(z)-S(z)|
$$
\n
$$
\leq |S_{n}(z)-S(z)| + |S(z)-S_{n-1}(z)|
$$

④ Let ²¹³ denote the ^A - - ote the $A_{s_{2}} =$, $\overline{}$ boundary of B, ie \sim $\sqrt{ }$ z_{\circ}] = r $\frac{2}{3}$. $\{z|lz$ $\partial B =$ $Sine$ $B \subseteq A$ and , $\overline{\bullet}$ $\overline{\mathcal{Z}}$, for each I A is open, $\sqrt{8}$ $z \in \partial B$ there exists 2×2
 2×2 where $2 \times 15^{+5}$ - - $S_{z}>0$ where
 $D(z_{j}S_{z})\subseteq A$ ${\frac{1}{2}w| |w-z| < \frac{2}{3}}.$ $[Real D(Z5\delta z)]$ half shrink that disc in and look at $D(z;\frac{\xi_{z}}{z}).$ Now we $\frac{32}{2}$. cover Consider the open $\theta = \left\{ D(z; \frac{\xi z}{2}) \middle| z \in \partial B \right\}$

,

 $0, \delta B.$

Since ∂B is compact, there exists a finite sub cover $e\overline{X}$ ists a time sube
 $\Theta' = \left\{ D(z_i; \frac{s_{zi}}{2}) \mid \overline{x} \right\}$ - - 1,2, . . .sn } 06 dB.
Let $\delta = min\left\{\frac{S_{zz}}{z} |i=1,$ 2 , \cdot $,n$ } > 0 Let 8 be the circle of $-e+ \gamma$ be the current at Z.
radius $p = r + S$ centered at Z. $Sine P7D$ we have $+h$ at 8 contains B We now just have to show that r is contained in A.

point Let w be a un 8. We must show $w \in A$. Draw the line connecting w to Zo, This line Intersects δB at some point Z that satisfies $|w-z| = S$. Since $z \in \partial B$, we know $z \in D(z_{i}; \frac{s_{zi}}{z})$ for some \overline{x} . S_{0} , $|z-z_{i}| \leq \frac{S_{2i}}{2}$. Then, $|W - Z_{\lambda}| = |W - Z + Z - Z_{\lambda}|$ $\leq |w-z|+|z-z_{1}|$ det $<\frac{\delta_{2}z}{2}+\frac{\delta_{2}z}{2}+\frac{\delta_{2}z}{2}$ $=$ δ_{2}

 S_{0} , $w \in D(Z_{\tilde{x}}; S_{z_{\tilde{\lambda}}}) \subseteq A$. Thus, all of γ is
contained in A.