
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2014

Brookfield, Shaheen*, Webster

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: Q denotes the rational numbers; Zn denotes the integers modulo n; N denotes the
natural numbers.

Groups

G1 (a) Suppose that H is a subgroup of the group G with the property that ghg−1 is in
H for all g ∈ G and h ∈ H. Let a, b, and c be elements of G with aH = bH.
Prove that acH = bcH.

(b) Suppose H is a subgroup of the group G and that a, b, and c be elements of G
with aH = bH. Must acH = bcH? Prove or give a counterexample.

Answer:

(a) Suppose that x ∈ acH. Then x = ach1 for some h1 ∈ H. Since a ∈ aH = bH, we
have a = bh2 for some h2 ∈ H. Since c−1h2c ∈ H we have c−1h2c = h3 for some
h3 ∈ H. Putting all this together:

x = ach1 = bh2ch1 = bc(c−1h2c)h1 = bch3h1 ∈ bcH.

Thus acH ⊆ bcH. Similarly bcH ⊆ acH.

(b) Counterexample: Let G = S3, H = {1, (1 2)}, a = 1, b = (1 2) and c = (1 3).
Then aH = bH = H, but acH = (1 3)H = {(1 3), (1 2 3)} and bcH = (3 2 1)H =
{(3 2 1), (2 3)}.

G2 Let N and H be subgroups of a group G with N normal. Suppose that the natural
homomorphism π : G → G/N given by π(g) = gN restricts to an isomorphism from
H to G/N . (When this happens, G is called the internal semidirect product of N
and H.) Prove the following:

(a) H ∩N = {1}.
(b) Each element g ∈ G can be written in the form nh with uniquely determined

n ∈ N and h ∈ H.

Answer:



(a) The kernel of π restricted to H is

{h ∈ H | π(h) = 1} = {h ∈ H | h ∈ N} = H ∩N.

Since π restricted to H is injective, this kernel is trivial, that is, H ∩N = {1}.
(b) Let g ∈ G. Since π is a bijection from H to G/N , there is a unique element h ∈ H

such that π(h) = π(g). Then π(gh−1) = π(g)(π(h))−1 = 1 and so gh−1 ∈ kerπ =
N . Thus there is some n ∈ N such that g = nh. The uniqueness of n follows
from the uniqueness of h.

G3 Suppose G is a group of order 56. Prove that G has a normal Sylow p subgroup for
some prime p dividing 56.

Answer: [See S11] Note that 56 = 23 · 7, so G has Sylow 2-subgroup(s) of order 8 and
Sylow 7-subgroup(s) of order 7. By the Sylow Theorems, n7 ≡ 1 mod 7 and n7|8, so
n7 is 1 or 8. If n7 = 1, then the unique Sylow 7-subgroup is normal.

Otherwise, G has 8 Sylow 7-subgroups. The intersection of any pair of these subgroups
is trivial. Since each subgroup contains 6 elements of order 7, G has a total of 6 ·8 = 48
elements of order 6. This leaves room for only 8 other elements and these other elements
must form a unique Sylow 2-subgroup which is therefore normal.

Rings

R1 For each n ∈ N, let In be an ideal of a commutative ring R with 1 6= 0. Suppose that
the ideals form an ascending chain, that is

I1 ⊆ I2 ⊆ I3 ⊆ I4 ⊆ · · ·

and let I =
⋃
n∈N In.

(a) Show that I is an ideal of R.

(b) Suppose, in addition, that In is a proper ideal for all n ∈ N. Show that I is a
proper ideal.

Answer: [See F02 and F09]

(a) I closed under addition: Let i, j ∈ I. Then there are m,n ∈ N such that i ∈ Im
and j ∈ In. Without loss of generality, m ≤ n and then i ∈ Im ⊆ In. Since
i, j ∈ In and In is an ideal, i+ j ∈ In ⊆ I.

I closed under multiplication by ring elements: Let i ∈ I and r ∈ R. Then
i ∈ In for some n ∈ N. Since In is an ideal, ri ∈ In ⊆ I.

(b) We prove the contrapositive, namely, if I is not proper, then In is not proper for
some n ∈ N.

If I is not proper, then I = R. In particular, 1 ∈ I. Then 1 ∈ In for some n ∈ N.
But this means In = R. Indeed, for any r ∈ R, we have r = r1 ∈ In because In
is an ideal.
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R2 Given a prime number p and an integer n ≥ 2, prove that the ring Z/〈pn〉 does not
contain an integral domain. You may assume that any subring of Z/〈pn〉 contains the
multiplicative identity of Z/〈pn〉.
Answer: [See S10] It is notationally convenient to replace Z/〈pn〉 by Zpn (These rings
are isomorphic). Let R be any subring of Zpn . We are allowed to assume that the
multiplicative identity element of Zpn is in R, that is, 1 ∈ R. But Zpn is a cyclic group
under addition and 1 is a generator. Since R is also an abelian group under addition,
Zpn = 〈1〉 ⊆ R ⊆ Zpn . Hence R = Zpn . It remains only to show that Zpn is not an
integral domain. Since pn = 0 in Zpn and n ≥ 2, we get p · (pn−1) = 0 with p and pn−1

both nonzero. Therefore Zpn is not an integral domain.

R3 Let R be a commutative ring with identity 1. Prove that an ideal M is maximal if and
only if R/M is a field.

Answer: See Fraleigh, Theorem 27.9.

Fields

F1 Let α ∈ C be one zero of f(x) = x3 − 3x+ 1 ∈ Q[x].

(a) Show that f is irreducible over Q.

(b) Show that β = α2 − 2 is another zero of f .

(c) Show that Q(α) is the splitting field of f over Q.

Answer:

(a) By the Rational Zeros Theorem, f has no rational zeros and so is irreducible over
Q. Note that this implies that α has degree 3 over Q.

(b) From α3 − 3α + 1 = 0 we get,

α3 = 3α− 1 α4 = 3α2 − α α6 = (3α− 1)2 = 9α2 − 6α + 1.

With these formulas at hand we can now calculate f(β):

f(β) = (α2 − 2)3 − 3(α2 − 2) + 1

= (α6 − 6α4 + 12α2 − 8)− 3α2 + 6 + 1

= 9α2 − 6α + 1− 6(3α2 − α) + 12α2 − 8− 3α2 + 6 + 1

= 0

Thus β is a zero of f . But β cannot be α since otherwise we would have α = α2−2,
α would be a zero of x2 − x− 2 ∈ Q[x], and α would have degree 2 over Q.

(c) The splitting field is, by definition, Q(α, β, γ) where γ is the third zero of f . From
(b) we have β = α2−2 ∈ Q(α). Also, since α+β+γ = 0 (or because γ = β2−2),
we have γ ∈ Q(α). Thus Q(α, β, γ) ⊆ Q(α) ⊆ Q(α, β, γ), which implies that
Q(α, β, γ) = Q(α).
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F2 Prove that Q(
√

2) and Q(
√

3) are not isomorphic.

Answer: If Q(
√

2) and Q(
√

3) are isomorphic, then Q(
√

2) contains a square root of 3.
We will show that this is impossible.

Suppose that a + b
√

2 ∈ Q(
√

2) with a, b ∈ Q satisfies (a + b
√

2)2 = 3. Then a2 +
2b2 + 2ab

√
2 = 3. We consider three cases: If both a and b are nonzero, then this

equation can be rewritten as
√

2 = (3 − a2 − 2b2)/2ab. If a = 0, then 2b2 = 3 and
hence 2b = ±

√
6. Similarly, if b = 0, we have a2 = 3 and hence a = ±

√
3. None of

these cases are possible since each shows that a known irrational number,
√

2,
√

3 or√
6, is rational. That leaves only the case a = b = 0, which can easily be eliminated

since 02 6= 3.

F3 Let E be the splitting field of x6 − 3 over the rationals Q.

(a) Find E and [E : Q]. Explain with all the details.

(b) Prove that Gal(E/Q) is not abelian.

Answer: [See F08]

(a) The zeros of x6− 3 are 6
√

3, λ 6
√

3, λ2 6
√

3, λ3 6
√

3, λ4 6
√

3 and λ5 6
√

3 where λ = e2πi/6.
Since λ = (λ 6

√
3)/ 6
√

3 ∈ E, it follows that E = Q(λ, 6
√

3). Consider

Q ⊆ Q( 6
√

3) ⊆ Q(λ, 6
√

3) = E

6 2

12

By Eisenstein, x6−3 is irreducible over Q, so [Q( 6
√

3) : Q] = 6. Because, λ is a zero
of x2−x+1 ∈ Q( 6

√
3)[x], the degree of λ over Q( 6

√
3) is at most 2. But Q( 6

√
3) ⊆ R

and λ 6∈ R, so λ has degree 2 over Q( 6
√

3). This implies [E : Q( 6
√

3)] = 2 and
[E : Q] = 12.

(b) Since E is a splitting field, Gal(E/Q) is a group of order 12. Each automorphism
in Gal(E/Q) sends 6

√
3 to one of its six conjugates 6

√
3, λ 6
√

3, λ2 6
√

3, λ3 6
√

3, λ4 6
√

3,
λ5 6
√

3, and sends λ to one of its two conjugates λ, λ5. Moreover, since 6
√

3 and
λ generate E over Q, each automorphism is determined by where it sends these
generators. In particular, there are automorphisms r, s ∈ Gal(E/Q) such that
r( 6
√

3) = λ 6
√

3, r(λ) = λ, s( 6
√

3) = 6
√

3, s(λ) = λ5. With a bit of calculation, one
can show that |r| = 6, |s| = 2 and rs = sr−1 and so Gal(E/Q) ∼= D12.

With less calculation, one finds that r(s( 6
√

3)) = λ 6
√

3, whereas s(r( 6
√

3)) = λ5 6
√

3
which shows that rs 6= sr and so Gal(E/Q) is not abelian.
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