
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2016

Brookfield*, Webster, (Krebs)

Directions: Answer 5 questions only. You must answer at least one from each of
groups, rings, and fields. Indicate CLEARLY which problems you want us to grade—
otherwise, we will select which ones to grade, and they may not be the ones that you
want us to grade. Be sure to show enough work that your answers are adequately
supported.

Notation: Z, Q and C denote the set of integers, rational numbers and complex
numbers respectively.

Groups

(G1) Show that no group of order 105 is simple.
Answer: Suppose, contrary to the claim that G is a simple a group with
|G| = 105. By the Sylow theorems, the number of Sylow 5-subgroups n5

satisfies n5 ≡ 1 mod 5 and n5 | 21. Thus n5 = 1, 21. Similarly, n7 ≡ 1
mod 7 and n7 | 15. Thus n7 = 1, 15. But, because G is simple, it has
no nontrivial proper normal subgroups, and so n5 = 1 and n7 = 1 are not
possible. Thus n5 = 21 and n7 = 15. By the usual argument, this implies
that G has 21 · 4 = 84 elements of order 5 and 15 · 6 = 90 elements of order
7—an obvious impossibility in a group of order 105.

(G2) Let G be a group and Z(G) the center of this group. Prove that if G/Z(G) is
cyclic then G is abelian.
Answer: See F12 Algebra Exam.

(G3) Prove that Z and Q are not isomorphic (as groups under addition).
Answer: Let φ : Z→ Q be a homomorphism. We show that φ is not surjective,
so, in particular, φ is not an isomorphism.

Let q = φ(1) ∈ Q. Then by familiar properties of homomorphisms, φ(n) =
nq for all n ∈ Z. If q = 0, then φ(n) = 0 for all n ∈ Z, so φ is not surjective
in this case.

If q 6= 0, then the image of φ is the set of all integer multiples of q. In
particular, q/2 is not in the image of φ. (If it were, then q/2 = nq for some
integer n ∈ Z. After cancelation, this implies that 1/2 = n, an obvious
contradiction.)

Rings

(R1) Let F be a field and F ∗ = {x ∈ F | x 6= 0} the group of units of F (under
multiplication). Show that for each n ∈ N, F ∗ has at most one subgroup of
order n.
Answer: Let G be a subgroup of F ∗ with order n. By Lagrange’s Theorem,
un = 1 for all u ∈ G, that is, all elements of G are roots of xn − 1 ∈ Z[x].
But this polynomial can have at most n roots. Because G has n elements,
this means that G is precisely the set of roots of xn − 1 ∈ Z[x], that is,
G = {x ∈ F ∗ | xn − 1 = 0}.

If H is another subgroup of F ∗ with order n, then the same argument shows
H = {x ∈ F ∗ | xn − 1 = 0}, and so H = G.
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(R2) Let a and b be elements of an integral domain D. If a|b and b|a, then a and
b are called associates, which we denote by a ≈ b. Prove the following for
a, b, c ∈ D with c 6= 0.
(a) a ≈ 1 if and only if a is a unit.

(b) ac ≈ bc if and only if a ≈ b.

(c) a ≈ b if and only if b = ua and a = u−1b for some unit u ∈ D.
Answer:

(a) If a ≈ 1, then in particular, a|1 so there is some u ∈ D such that au = 1.
This means that a is a unit.
Conversely, if a is a unit, then there is some u ∈ D such that au = 1.
This means that a|1. Also, since a = 1a, we have 1|a and so a ≈ 1.

(b) Suppose that ac ≈ bc. Then ac|bc, that is acs = bc for some s ∈ D. Since
c is nonzero, we can cancel c from this equation to get as = b, and so a|b.
Similarly, bc|ac implies that b|a.
Suppose that a ≈ b. Then a|b and b|a. As above, these imply that ac|bc
and bc|ac, so ac ≈ bc.

(c) Suppose first that a ≈ b with a 6= 0. Then a|b and b|a, so there are
u, v ∈ D such that av = b and bu = a. Eliminating b from these equations
gives a(uv − 1) = 0. Since a 6= 0, this implies that uv = 1, that is, u is a
unit and v = u−1.
Suppose next that a ≈ b with a = 0. Then a|b implies that b = 0, and
b = ua and a = u−1b holds with u = 1.
The converse is easy, since if b = ua and a = u−1b, then a|b and b|a and
so a ≈ b.

(R3) Suppose that R is a principal ideal domain and p ∈ R. Prove that p is prime
if and only if p is irreducible.
Answer: (Dummit and Foote, 8.3, Proposition 11) The definitions of prime
and irreducible both include the requirement that p is nonzero and not a unit.
Then, by definition, p is prime if p|ab implies p|a or p|b, and p is irreducible if
p = ab implies a is a unit or b is a unit.

Suppose that p is prime. If p = ab for some a, b ∈ R, then p|ab and so p|a
or p|b. Without loss of generality, suppose that p|a, that is ps = a for some
s ∈ R. Combining these equations we get p(sb− 1) = 0, and since p 6= 0, we
can cancel p to get sb = 1 showing that b is a unit.

Suppose that p is irreducible. We show first that (p) is maximal. Suppose
that I is an ideal that contains (p). Since I is principal, I = (r) for some
r ∈ R, and then p ∈ (r) implies that p = rs for some s ∈ R. Because p is
irreducible we have two cases: If r is a unit, then I = (r) = R. Otherwise s
is a unit. In this case r = s−1p and so r ∈ (p), and (r) ⊆ (p). Combined with
(p) ⊆ I = (r) we get I = (p). We have shown that, if I contains (p) then
I = R or I = (p).

Now suppose p|ab for some a, b ∈ R. We suppose that p does not divide a
and show that p must divide b. Because a 6∈ (p), (p, a) is strictly bigger than
(p), and so, because (p) is maximal, we have (p, a) = R. In particular, there
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are x, y ∈ R such that xp+ya = 1. Multiplying this by b we get xpb+yab = b.
Since both xpb and yab are divisible by p, the same is true of b, that is p|b.

Fields

(F1) Let f(x) = x3 + 9x+ 6 and let θ ∈ C be a root of f(x).
(a) Show that f(x) is irreducible over Q.

Answer: This follows from Eisenstein with p = 3

(b) Express
1

θ + 1
as a Q-linear combination of {1, θ, θ2}.

Answer: Using long division we get f(x) = (x2 − x + 10)(x + 1) − 4.
Plugging in x = θ in this gives 0 = (θ2 − θ+ 10)(θ+ 1)− 4 which can be
written as

1

θ + 1
=

1

4
(θ2 − θ + 10)

(c) Express
1

(θ + 1)2
as a Q-linear combination of {1, θ, θ2}.

Answer: Many tricks can be used to answer this question.
• Using the Euclidean Algorithm we find

(−4− 3x)f(x) + (3x2 − 2x+ 28)(x+ 1)2 = 4.

Plugging in x = θ in this gives (3θ2 − 2θ + 28)(θ + 1)2 = 4 which
be written as

1

(θ + 1)2
=

1

4
(3θ2 − 2θ + 28)

• Squaring the result in (b) we find

1

(θ + 1)2
=

1

16
(θ2 − θ + 10)2

=
1

16
(θ4 − 2θ3 + 21θ2 − 20θ + 100)

=
1

4
(3θ2 − 2θ + 28)

using θ3 + 9θ + 6 = 0 and θ4 + 9θ2 + 6θ = 0.

(F2) Find a complex number α ∈ C such that Q(α) = Q(
√

3, 3
√

3). Prove your
claim.
Answer: (See S04 Algebra Exam) Many answers are possible, for example,
α = 6

√
3. Since

√
3 = α3 ∈ Q(α) and 3

√
3 = α2 ∈ Q(α) we have Q(

√
3, 3
√

3) ⊆
Q(α), and since α =

√
3/ 3
√

3 ∈ Q(
√

3, 3
√

3) we have Q(α) ⊆ Q(
√

3, 3
√

3).
Alternatively, suppose that α =

√
3 + 3
√

3. Then α ∈ Q(
√

3, 3
√

3) so Q(α) ⊆
Q(
√

3, 3
√

3). To prove the opposite inclusion, we note that (α−
√

3)3 = 3, that
is, α3 − 3

√
3α2 + 9α− 3

√
3 = 3. This can be solved for

√
3 to give,

√
3 =

α3 + 9α− 3

3α2 + 3
∈ Q(α)

This implies 3
√

3 = α−
√

3 ∈ Q(α), and so Q(
√

3, 3
√

3) ⊆ Q(α).
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(F3) Let F be a finite field. Show that |F | = pn for some p, n ∈ N with p prime.
Answer: (Fraleigh, Theorem 33.2) Let K ⊆ F be the prime subfield of F .
Since K is finite, it is isomorphic to the field Zp for some prime p. Because F
can be considered as a finite dimensional vector space over K, if dimK F = n,
then each element of F can be written uniquely in the form a1b1 +a2b2 + · · ·+
anbn where {b1, b2, . . . , bn} is a basis for F over K, and a1, a2, . . . , an ∈ K.
Since there are p choices for each of a1, a2, . . . , an, there are a total of pn

elements of F .


