
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2019

Brookfield*, Demeke, Krebs

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: Q denotes the rational numbers; Z is the set of integers; Zn is the set of integers
modulo n; and C is the set of complex numbers.

Groups

(G1) Let G be finite group with subgroup H.
(a) Prove that, if [G : H] = 2, then H is normal.

(b) Disprove that, if [G : H] = 3, then H is normal.
Answer:

(a) Since [G : H] = 2, there are two left cosets of H, each of the same size. One of
the left cosets is H itself, so the other left coset is G\H. By the same argument,
the right cosets of H are H and G\H. Because the left and right cosets coincide,
H is normal.

(b) Counterexample: S3 has three subgroups of index 3: H1 = {e, (1 2)}, H2 =
{e, (1 3)} and H3 = {e, (2 3)}. None of these subgroups is normal. For example,
(1 2)H2(1 2)−1 = H3.

(G2) Let R× be the set of nonzero real numbers, an abelian group under multiplication. Let
R+ be the set of positive real numbers and H = {−1, 1}. You may assume without
proof that R+ and H are subgroups of R×. Use the First Isomorphism Theorem to
prove that R×/H is isomorphic to R+.
Answer: Consider the absolute value function φ : R× → R+ defined by φ(a) = |a|.
Since φ(ab) = |ab| = |a||b| = φ(a)φ(b) for all a, b ∈ R×, φ is a homomorphism. The
kernel of φ is kerφ = {a ∈ R× | φ(a) = 1} = H and the image of φ is imφ = R+, so
by the first isomorphism theorem, R×/ kerφ ∼= imφ, that is, R×/H ∼= R+.

Aside 1: The squaring function φ(a) = a2 for a ∈ R× works just as well the absolute
value function in this proof.

Aside 2: Define ψ : H × R+ → R× by ψ(h, r) = hr for all (h, r) ∈ H × R+. Then
it’s easy to check that ψ is an isomorphism and so we get the stronger result that
H × R+ ∼= R×.

(G3) Recall that the dihedral group of order 12 can be written as

D12 = {1, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}
with |r| = 6, |s| = 2 and rs = sr−1. Find all Sylow 2-subgroups of D12.
Answer: [See F16] Sylow 2-subgroups of D12 have order 4. Since there are no elements
of order 4 in D12, each Sylow 2-subgroup must be isomorphic to the Klein group and
be generated by two commuting elements of order 2. Since s and r3 have order 2 and
commute, H = {1, r3, s, sr3} is a Sylow 2-subgroup. All other Sylow 2-subgroups are
conjugates of H: rHr−1 = {1, r3, sr, sr4}, r2H(r2)−1 = {1, r3, sr2, sr5}. This gives



3 Sylow 2-subgroups, which is consistent with the Sylow theorems that predict that
the number of Sylow 2-subgroups should be 1 or 3.

Rings

(R1) Let R be a commutative ring with 1 6= 0. Suppose that every proper ideal of R
is prime. Prove that R is a field. Hint: For an element t in R, consider the ideal
I = (t2) = Rt2 generated by t2.
Answer: Because the zero ideal {0} is prime, if ab = 0, then ab ∈ {0} so either
a ∈ {0} or b ∈ {0}, that is, a = 0 or b = 0. Thus R is an integral domain.

Suppose that t ∈ R is nonzero and not a unit. Then I = (t2) = Rt2 is a proper
ideal and hence prime. Since t2 ∈ I, and I is prime, we have t ∈ I. This means that
t = rt2 for some r ∈ R. Since R is a domain, and t is nonzero, we can cancel t from
this to get 1 = rt. But this means that t is a unit, a contradiction.

Hence all nonzero elements of R are units and R is a field.

(R2) Let I = (x3−1, x4−1), an ideal in Q[x]. Find some h(x) ∈ Q[x] such that I = (h(x)).
Prove this equality.
Answer: Let f(x) = x3−1 and g(x) = x4−1. Since x−1 divides f(x) and g(x), and
x − 1 = (−x)g(x) + f(x), h(x) = x − 1 is the greatest common divisor of f(x) and
g(x). (Of course the gcd can also be calculated (in one step!) using the Euclidean
algorithm.) We show that I = (h(x)).

Let k(x) ∈ I, then for some a(x), b(x) ∈ Q[x],

k(x) = a(x)f(x) + b(x)g(x)

= a(x)(x3 + x2 + x+ 1)h(x) + b(x)(x2 + x+ 1)h(x)

= (a(x)(x3 + x2 + x+ 1) + b(x)(x2 + x+ 1))h(x) ∈ (h(x)).

Now suppose that k(x) ∈ (h(x)). Then, for some a(x) ∈ Q[x],

k(x) = a(x)h(x) = a(x)((−x)g(x) + f(x)) = a(x)(−x)g(x) + a(x)f(x) ∈ I.

(R3) Let Q[x2] be the smallest subring of Q[x] that contains Q and x2. Show that Q[x2]
is isomorphic to Q[x].
Answer: Let φ : Q[x]→ Q[x2] be the evaluation homomorphism at x2 ∈ Q[x] defined
by φ(f(x)) = f(x2) for all f ∈ Q[x]. In more detail

φ(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a0 + a1x
2 + a2x

4 + · · ·+ anx
2n.

Then imφ is a subring of Q[x] that contains Q (since φ(a0) = a0 for all a0 ∈ Q), and
x2 (since φ(x) = x2). This implies Q[x2] ⊆ imφ.

On the other hand, every polynomial in imφ is obtained using ring operations from
x2 and Q, so is in Q[x2]. This shows that Q[x2] = imφ.

Because of the linear independence of {1, x2, x4, . . . } over Q, if φ(a0 +a1x+a2x
2 +

· · ·+ anx
n) = 0, then a0 = a1 = · · · = an = 0. This implies that kerφ = {0}.

By the first isomorphism theorem, Q[x2] = imφ ∼= Q[x]/ kerφ ∼= Q[x].

Fields

(F1) Let E be the splitting field of (x2−2)(x2−3) over Q. Let G be the Galois group of E
over Q. Find a familiar group isomorphic to G. By “familiar group” we mean a cyclic
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group, symmetric group, alternating group, or dihedral group, or direct products of
such groups.
Answer: Clearly E = Q(

√
2,
√

3). Since
√

3 6∈ Q(
√

2) (see Fall 2018), we have
[E,Q] = 4:

Q ⊆ Q(
√

2) ⊆ E

2 2

4

Since E is a Galois extension of Q, Gal(E,Q) has order 4. Each automorphism in
Gal(E,Q) permutes {

√
2,−
√

2} and {
√

3,−
√

3} and is determined by those permu-
tations. There are four such permutations and and so each must give an element of
Gal(E,Q). So Gal(E,Q) = {φ0, φ1, φ2, φ3} as in the table:

x
√

2
√

3

φ0(x)
√

2
√

3

φ1(x) −
√

2
√

3

φ2(x)
√

2 −
√

3

φ3(x) −
√

2 −
√

3

φ0 is the identity function. The other elements of Gal(E,Q) have order 2, so
Gal(E,Q) is isomorphic to the Klein group V = Z2 × Z2.

(F2) Let F be a field with characteristic not equal to 2 or 3. Show that x2 + 3 ∈ F [x] has
a zero in F if and only if x2 + x + 1 ∈ F [x] has a zero in F . Hint: Complete the
square.
Answer: Suppose that f = x2 + x + 1 has a zero a ∈ F . Then a2 + a + 1 = 0. Set
b = 2a+ 1 ∈ F . Then

b2 + 3 = (2a+ 1)2 + 3 = 4a2 + 4a+ 4 = 4(a2 + a+ 1) = 0.

Hence b is a zero of g = x2 + 3. Conversely, suppose that b is a zero of g = x2 + 3.
Then b2 + 3 = 0. Set a = (b− 1)/2 ∈ F . Note that this make sense because 2 6= 0 so
has a multiplicative inverse 2−1 = 1/2 in the field F . Then

a2 + a+ 1 =
1

4
(b2 − 2b+ 1) +

1

2
(b− 1) + 1

=
1

4
(b2 − 2b+ 1 + 2(b− 1) + 4) =

1

4
(b2 + 3) = 0,

and so a is a zero of f .

(F3) Let α and β be complex numbers such that α = β2 − 1 and β = α2 − 1. Show that
Q(α) = Q(β) and [Q(α) : Q] ≤ 2.
Answer: Since α = β2 − 1 ∈ Q(β), we have Q(α) ⊆ Q(β). Similarly Q(β) ⊆ Q(α).

Plugging α = β2 − 1 into β = α2 − 1, we get α = (α2 − 1)2 − 1, that is, α is
a zero of f(x) = x4 − 2x2 − x. This polynomial has zeros 0 and −1, so factors:
f(x) = x(x+ 1)(x2−x−1). Since α is a zero of one of the factors of f(x), the degree

of α over Q is at most 2. (In fact, α, β ∈ {0,−1,
1

2
(1±

√
5)}.)

Aside: The claim is true when α, β ∈ C satisfy α = β2 −A and β = α2 −A where
A is any rational number. Plugging either of these equations into the other, shows
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that α and β are zeros of f(x) = (x2 − x + A)(x2 + x + A + 1), so α and β have a
most degree 2 over Q .
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