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Abstract

For a graph G and a subgraph H (called backbone graph) of G, a
backbone k-coloring of G with respect to H is a proper vertex coloring
of G using colors from the set {1, 2, . . . , k}, with an additional con-
dition that colors for any two adjacent vertices in H must differ by
at least two. The backbone chromatic number of G over H, denoted
by BBC(G, H), is the smallest k of a backbone k-coloring admitted
by G with respect to H. Broersma, Fomin, Golovach, and Woeginger
[2] showed that BBC(G, H) ≤ 2χ(G) − 1 holds for every G and H;
moreover, for every n there exists a graph G with a spanning tree T

such that χ(G) = n and the bound is sharp. To answer a question
raised in [2], Mǐskuf, Škrekovski, and Tancer [17] proved that for any
n there exists a triangle-free graph G with a spanning tree T such
that χ(G) = n and BBC(G, T ) = 2n − 1. We extend this result by
showing that for any positive integers n and l, there exists a graph G

with a spanning tree T such that G has girth at least l, χ(G) = n,
and BBC(G, T ) = 2n− 1.
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1 Introduction

Backbone coloring is a model for the channel assignment problem introduced

by Hale [11]. The task in the channel assignment problem is to assign chan-

nels to a set of transmitters such that interference is avoided. Usually inter-

ference is divided into two types: strong interference and weak interference.

The channels assigned to two transmitters with strong interference should

be far apart, and channels assigned to two transmitters with weak interfer-

ence should be distinct. A well studied graph theory model for the channel

assignment problem is the distance-two labeling of graphs. We construct a

graph where vertices represent the transmitters. If two vertices in the model

graph are adjacent then stronger interference might occur between the two

corresponding transmitters so the separation of these two channels needs to

be at least two; and for two vertices that are distance two apart (that is,

they are not adjacent but they share a common neighbor in G) then weak

interference might occur between the two corresponding transmitters so they

must receive different channels.

Backbone coloring of a graph is another model for the channel assignment

problem, where edges in G are of two different types. Let H be a subgraph of

G. An edge of G is either an edge of H which represents strong interference,

or not an edge of H which represents weak interference. The subgraph H

is called the backbone of G. In a backbone coloring of G with backbone

H, colors assigned to a pair of vertices adjacent in H must be at least two

apart, while vertices adjacent in G but not in H must get different colors.

To be precise, a backbone k-coloring of G with respect to H is a function

f : V (G) → {1, 2, . . . , k} such that the following are satisfied:

|f(u)− f(v)| ≥

{
2 if uv ∈ E(H);

1 if uv ∈ E(G) \ E(H).

The backbone chromatic number of G over H, denoted by BBC(G, H), is the

minimum k for which there is a backbone k-coloring of G with respect to H.

For a graph G, the square of G, denoted by G2, has V (G) as the vertex

set and uv ∈ E(G2) if uv ∈ E(G) or there is a 2-path from u to v in
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G. A distance-two labeling (also known as L(2, 1)-labeling) is the same as a

backbone coloring of G2 with respect to the backbone G (however, a distance-

two labeling allows 0 as a color while a backbone coloring uses only positive

integers, hence a distance-two k-labeling of a graph G is a backbone (k +

1)-coloring of G2 with respect to G). Introduced by Griggs and Yeh [10],

distance-two labeling has been studied extensively in the past three decades

(cf. [5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 20, 21, 22]).

Backbone coloring was first introduced by Broersma et al. [1] and has

been investigated widely by several authors in recent years. Broersma, Fomin,

Golovach, and Woeginger [2] studied the BBC(G, H)-number when the back-

bone graph H is a spanning tree or a spanning path (if exists) of G. Mǐskuf,

Škrekovski, and Tancer [18] proved that for a graph G with maximum degree

∆ and backbone H being a d-degenerated subgraph of G, then BBC(G, H) ≤
∆ + d + 1; moreover, if H is a matching then BBC(G, H) ≤ ∆ + 1.

Denote the chromatic number of a graph G by χ(G). By properly coloring

the vertices of G from the set {1, 3, 5, . . . , 2χ(G)−1}, one obtains a backbone

(2χ(G)−1)-coloring of G with respect to any subgraph H. Therefore, for any

graph G and any subgraph H of G, BBC(G, H) ≤ 2χ(G)− 1. It was proved

in [2] that for any positive integer n, there exists a graph G and a spanning

tree T of G such that χ(G) = n and BBC(G, T ) = 2χ(G)− 1. The graphs G

used in the proof of this result are complete n-partite graphs, which contain

many triangles.

An interesting question asked in [2] was whether there exits a constant

c such that BBC(G, T ) ≤ χ(G) + c holds for all triangle-free graphs G and

spanning tree T of G. Mǐskuf, Škrekovski, and Tancer [17] answered this

question in negative by showing that for any n there exists a triangle-free

graph G with a spanning tree T such that χ(G) = n and BBC(G, T ) = 2n−1.

The graphs constructed in [17], by a process similar to the construction of

Mycielski graphs, are infinite and contain 4-cycles. Naturally, the authors

raised the question regarding the existence of a graph G with large girth (i.e.,

the length of a shortest cycle in G) such that BBC(G, T ) = 2χ(G) − 1 for

some spanning tree T . We answer this question in positive.
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Theorem 1. For any positive integers n and l, there exists a graph G with

girth greater than l and χ(G) = n, and a spanning forest T of G such that

BBC(G, T ) = 2n− 1.

The proof of Theorem 1 is presented in the next two sections.

In Section 4 we discuss computational complexity for backbone colorings.

Let T be a tree and G a spanning subgraph of T 2. We prove that if T has a

bounded maximum degree, ∆(T ) ≤ c for some constant c, then there exists

a polynomial-time algorithm to determine the exact value of BBC(G, T ).

2 Construction of G and T

The construction of G and T in Theorem 1 will be based on the following

result which seems to be a folklore. But we could not find a reference with

the exact statement. For the completeness of the paper, we provide here an

easy probabilistic proof.

Lemma 2. For any positive integers n, l,m0, for each δ > 0, there is an

n-partite graph G with partite sets V1, V2, . . . , Vn such that the following hold:

• |Vi| = m ≥ m0.

• G has χ(G) = n and girth greater than l.

• For any 1 ≤ i 6= j ≤ n, for any A ⊂ Vi, B ⊂ Vj with |A|, |B| ≥ δm,

there is an edge between A and B.

Proof. Let ε = 1/(2l), m be a sufficiently large integer and p = m−1+ε. Let G

be a random graph with vertex set V = V1∪V2 . . .∪Vn, where |Vi| = 2m, and

uv is an edge of G with probability p for any u ∈ Vi, v ∈ Vj (1 ≤ i < j ≤ n).

Let X be the random variable which is the number of cycles in G of length

at most l. The expectation of X is

E(X) ≤
l∑

i=1

(2nm)i

2i
pi ≤ l(2nmp)l = l(2n)lm1/2,
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where (x)i = x(x− 1) · · · (x− i + 1). Hence

P (X > m) ≤ E(X)

m
→ 0, as m →∞.

Let Y be the number of pairs of sets A, B such that A ⊂ Vi, B ⊂ Vj with

i 6= j, |A|, |B| ≥ δm, and E[A, B] = ∅ (that is, there are no edges between A

and B). The expectation of Y is

E(Y ) ≤ 22nm(1− p)(δm)2 ≤ e2nm−pδ2m2

= e2nm−δ2m1+ε → 0, as m →∞.

Hence

P (Y ≥ 1) ≤ E(Y ) → 0, as m →∞.

So for m sufficiently large, P (X > m) < 1/2 and P (Y ≥ 1) < 1/2, and hence

P ((X ≤ m) ∧ (Y = 0)) > 0. This implies that there is a graph G in which

the number of short cycles is less than m and for any pair A ⊂ Vi, B ⊂ Vj

with i 6= j, |A|, |B| ≥ δm, we have E[A, B] 6= ∅. Delete m vertices from each

Vi (for i = 1, 2, . . . , n) so that each short cycle intersects the deleted vertices.

The resulting graph G′ has girth at least l + 1.

Without loss of generality, we may assume that δ ≤ 1/n. Then χ(G′) = n.

For otherwise, let c be an (n − 1)-coloring of G′. For each 1 ≤ i ≤ n, let ci

be a color used by at least δm vertices of Vi. Then ci = cj for some i 6= j.

However, there is an edge connecting a vertex of color ci in Vi and a vertex

in Vj of color cj = ci, a contradiction. This completes the proof of Lemma

2.

Let 0 < δ < 1
2n2n!2n be a fixed real number, and assume κ = δm is an

integer. Assume G is a graph satisfying the condition of Lemma 2. We

shall construct a spanning forest T of G so that BBC(G, T ) = 2n − 1. Let

b = 2n2κ.

Lemma 3. Assume G is a graph satisfying the condition of Lemma 2. If

1 ≤ i < j ≤ n, A ⊆ Vi, B ⊆ Vj and |A| = |B| ≥ κ, then there is a matching

M from A to B of size |M | ≥ |A| − κ.
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Proof. We prove the lemma by induction on |A| − κ. If |A| − κ = 0, then

there is nothing to prove. Assume |A| − κ ≥ 1. By our assumption, there

is an edge e = xy with x ∈ A and y ∈ B. By induction hypothesis, there is

a matching M ′ from A − {x} to B − {y} of size |M ′| ≥ |A| − κ − 1. Then

M = M ′ ∪ {xy} is a matching from A to B of size |M | ≥ |A| − κ.

Let π be a permutation of {1, 2, . . . , n}. We construct a forest Fπ re-

cursively. Note that in the following although the notations might seem

complicated (as we need to, in every iteration, keep track of all vertices and

edges included in the forest), the idea itself is quite simple. We shall adopt

several figures to facilitate visuality of the notations.

Let V (Fπ) be the vertex set of Fπ. We shall denote by Vπ,i the set V (Fπ)∩
Vπ(i).

At the beginning we choose two sets V 0
π,n ⊆ Vπ(n) and V 0

π,n−1 ⊆ Vπ(n−1) so

that |V 0
π,n| = |V 0

π,n−1| = b. By Lemma 3, there is a matching Mπ,n−1 of size

b − κ from V 0
π,n−1 to V 0

π,n. Let Fπ,n−1 denote the subgraph induced by the

edges in Mπ,n−1. Let V 1
π,j = V (Fπ,n−1) ∩ Vπ(j) for j = n− 1, n. See Figure 1

for a drawing of Fπ,n−1.

�
�

�
�Vπ(n)

Mπ,n−1

s s s s s s s s s s s s s s s s s s s s
�
�

�
�Vπ(n−1) s s s s s s s s s s s s s s s s s s s s

���
V 1

π,n

��	
V 1

π,n−1

�
�

�
�Vπ(1) s s s s s s s s s s s s s s s s s s s s

�
 �	
�
 �	

ssss

Figure 1: Fπ,n−1 has b− κ edges (components).
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Next, choose a set V 1
π,n−2 ⊆ Vπ(n−2) so that |V 1

π,n−2| =
∑n

j=n−1 |V 1
π,j|. Let

Mπ,n−2 be a matching from V 1
π,n−2 to V 1

π,n−1 ∪ V 1
π,n so that for j = n − 1, n,

at least |V 1
π,j| − κ vertices of V 1

π,j are incident to edges of Mπ,n−2. Such a

matching exists by Lemma 3.

Let F ′
π,n−2 be the forest induced by Mπ,n−2 ∪ Fπ,n−1. Each component

of F ′
π,n−2 is viewed as a rooted tree with a root in V 1

π,n. Delete from F ′
π,n−2

those components which contain a vertex not incident to an edge in Mπ,n−2.

The resulting forest is denoted by Fπ,n−2. Let V 2
π,j = V (Fπ,n−2) ∩ Vπ(j) for

j = n− 2, n− 1, n. See Figure 2 for a drawing of Fπ,n−2.
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�Vπ(n) s s s s s s s s s s s s s s s s
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Mπ,n−2

���
V 2

π,n

��	
V 2

π,n−2

�
�

�
�Vπ(n−1) s s s s s s s s s s s s

�
�

�
�Vπ(n−2) s s s s

s
s

s s s s ss s s s s s ss

�
 �	
�
 �	
�
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 �	
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HHHHH
HHHHH
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�
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Figure 2: Fπ,n−2 has at most b−3κ components. Note some vertices or edges

were deleted from Fπ,n−1.

Note that there are at most 2κ vertices of Fπ,n−1 not incident to an edge

of Mπ,n−2. Hence at most 2κ components of F ′
π,n−2 are deleted. In particular,

we have

|V 2
π,n−1| = |V 2

π,n| ≥ b− 3κ,
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and

|V 2
π,n−2| = |V 2

π,n−1|+ |V 2
π,n|.

Continue this process. In general, assuming i ≤ n − 2, the forest Fπ,n−i

is constructed with the following properties:

(1) Fπ,n−i has at least b− i(i+1)
2

κ components.

(2) Let V i
π,j = V (Fπ,n−i) ∩ Vπ(j) for j = n − i, n − i + 1, . . . , n. Then for

n− i ≤ j < j′ ≤ n, any vertex in V i
π,j′ has a unique neighbour (in the

forest Fπ,n−i) in V i
π,j.

(3) |V i
π,n−1| = |V i

π,n| ≥ b− i(i+1)
2

κ; and for j = n− i, n− i + 1, . . . , n− 2,

|V i
π,j| =

n∑
j′=j+1

|V i
π,j′|.

We claim that the above properties are kept in the next step. Choose a

set V i
π,n−i−1 ⊆ Vπ(n−i−1) so that |V i

π,n−i−1| =
∑n

j=n−i |V i
π,j|. Let Mπ,n−i−1 be a

matching from V i
π,n−i−1 to ∪n

j=n−iV
i
π,j so that for j = n − i− 1, n− i, . . . , n,

at least |V i
π,j| − κ vertices of V i

π,j are incident to edges of Mπ,n−i−1. Such a

matching exists by Lemma 3.

Let F ′
π,n−i−1 be the forest induced by Mπ,n−i−1 ∪ Fπ,n−i. Delete from

F ′
π,n−i−1 those components which contains a vertex not incident to an edge

in Mπ,n−i−1. The resulting forest is denoted by Fπ,n−i−1. Let V i+1
π,j =

V (Fπ,n−i−1) ∩ Vπ(j) for j = n− i− 1, n− i, . . . , n.

Since there are at most (i + 1)κ vertices of Fπ,n−i not incident to an edge

of Mπ,n−i−1, at most (i + 1)κ components of F ′
π,n−i−1 are deleted. Therefore

(1) and (3) are satisfied for Fπ,n−i−1. From the construction of Fπ,n−i, we

know that if n − i − 1 ≤ j < j′ ≤ n, then any vertex in V i+1
π,j′ has a unique

neighbour in V i+1
π,j (in Fπ,n−i−1). So, (2) is satisfied.

At the end of the process, let Fπ = Fπ,1 and Vπ,1 = V n−1
π,1 . The forest Fπ

has the following properties:

• The number of components of Fπ is at most b and at least b− n(n−1)
2

κ.
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• If 1 ≤ j < j′ ≤ n, then each vertex in Vπ,j′ has a unique neighbour (in

the forest Fπ) in Vπ,j.

Observe that each component of Fπ contains one vertex in Vπ,n and 2n−j−1

vertices of Vπ,j for 1 ≤ j ≤ n−1. So each component of Fπ has 2n−1 vertices,

and hence Fπ has at most 2n−1b vertices.

Let Sn be the set of all permutations of {1, 2, . . . , n}. We choose the

forests Fπ so that for π, π′ ∈ Sn, π 6= π′, Fπ and Fπ′ are vertex disjoint. Since

m ≥ 2nn!b, by Lemma 3, it can be verified easily that the family of vertex

disjoint forests {Fπ : π ∈ Sn} can be constructed. Let T = ∪π∈SnFπ.

In the next section, we prove BBC(G, T ) = 2n− 1.

3 Proof of Theorem 1

Since χ(G) = n, we know that BBC(G, T ) ≤ 2n−1. Assume to the contrary

that BBC(G, T ) ≤ 2n− 2. Let c be a backbone (2n− 2)-coloring for G with

respect to T .

For 1 ≤ i ≤ n, let Ci,1 be the set of colors that have been used by at least

k vertices in Vi. That is,

Ci,1 = {a : |c−1(a) ∩ Vi| ≥ κ}.

Because there are 2n − 2 colors and |Vi| = m > (2n − 2)κ, so |Ci,1| ≥ 1 for

all i.

By Lemma 3, Ci,1 ∩ Cj,1 = ∅ for i 6= j. As | ∪n
i=1 Ci,1| ≤ 2n − 2, there

exists some 1 ≤ s1 ≤ n such that |Cs1,1| = 1. Assume Cs1,1 = {a1}.
Now we consider the restriction of c to the subgraph of G induced by

U1 = ∪π∈Sn,π(1)=s1V (Fπ).

Let

W1 = {v ∈ U1 ∩ Vs1 : c(v) = a1}.

For each π with π(1) = s1, delete from Fπ those components which contain

a vertex in Vs1 \W1. Denote the resulting forest by F ′
π,1. Since |c−1(i)∩Vs1| <

9



�
�

�
��

�
�
��

�
�
�sss�

�
�
�Vπ(1)

Vπ(n)

Vπ(n−1)

�
 �	@@I

W1 ∩ F ′
π,1

s s s s s s
s s s s s

s s s s s

s s s s s s s s s s s s s s s s colored by a1

6= a1, a1 ± 1

6= a1, a1 ± 1
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Figure 3: A partial drawing of F ′
π,1 with edges connecting vertices in W1 and

other partite sets.

κ for i 6= a1, we know that for each π with π(1) = s1,

|Vπ,1 \W1| ≤ (2n− 3)κ.

Hence at most (2n − 3)κ components of Fπ are deleted, so F ′
π,1 has at least

b− (n(n−1)
2

+ (2n− 3))κ components.

By our construction of Fπ, for i 6= s1, every vertex

v ∈ Vi ∩ (∪π∈Sn,π(1)=s1V (F ′
π,1))

is adjacent to a vertex u ∈ W1 by an edge in F ′
π,1. Hence c(v) /∈ {a1 −

1, a1, a1 + 1}. See Figure 3 for in illustration of F ′
π,1.

Similarly, for 1 ≤ i ≤ n, i 6= s1, let Ci,2 be the set of colors that have

been used by at least κ vertices in ∪π∈Sn,π(1)=s1V (F ′
π,1) ∩ Vi. That is,

Ci,2 = {a : |c−1(a) ∩ Vi ∩ (∪π∈Sn,π(1)=s1V (F ′
π,1))| ≥ κ}.

Since |Vi ∩ (∪π∈Sn,π(1)=s1V (F ′
π,1))| ≥ b − n2κ ≥ n2κ, each Ci,2 is not empty.

By the observation above, Ci,2∩{a1−1, a1, a1+1} = ∅. Moreover, by Lemma

10



3, Ci,2 ∩ Cj,2 = ∅ for i 6= j. As

| ∪i6=s1,1≤i≤n Ci,2| ≤ |{1, 2, . . . , 2n− 2} − {a1 − 1, a1, a1 + 1}| ≤ 2n− 4,

there exists an index s2 6= s1 such that |Cs2,2| = 1. Assume Cs2,2 = {a2}.
Note, |a2 − a1| ≥ 2.

Now we consider the restriction of c to the subgraph of G induced by

U2 = ∪π∈Sn,π(1)=s1,π(2)=s2V (F ′
π,1).

Let

W2 = {v ∈ U2 ∩ Vs2 : c(v) = a2}.

For each π with π(1) = s1 and π(2) = s2, delete from F ′
π,1 those com-

ponents which contain a vertex in Vπ,2 \W2. Denote the resulting forest by

F ′
π,2. Similarly, |c−1(i) ∩ Vs2| < κ for i 6= a2, and |c−1(i) ∩ Vs2 ∩ V (F ′

π,1)| = 0

for i ∈ {a1 − 1, a1, a1 + 1}. Hence

|(Vs2 ∩ V (F ′
π,1)) \W2| ≤ (2n− 5)κ,

and at most (2n − 5)κ components of F ′
π,1 are deleted. So F ′

π,2 has at least

b− (n(n−1)
2

+ (2n− 3) + (2n− 5))κ components.

In general, assume 1 ≤ q ≤ n − 1 and we have chosen s1, s2, . . . , sq.

Let Sn;s1,s2,...,sq be the set of permutations π ∈ Sn with π(j) = sj for j =

1, 2, . . . , q. Assume for each π ∈ Sn;s1,s2,...,sq , we have constructed a forest

F ′
π,q such that the following are true:

(1) For j = 1, 2, . . . , q, vertices in V (F ′
π,q) ∩ Vπ(j) are colored by aj.

(2) |aj − aj′| ≥ 2 if j 6= j′.

(3) F ′
π,q has at least b−(n(n−1)

2
+(2n−3)+(2n−5)+ · · ·+(2n−(2q+1)))κ

components.

(4) If 1 ≤ j < j′ ≤ n, then each vertex in Vπ,j′ ∩ V (F ′
π,q) has a unique

neighbour in Vπ,j ∩ V (F ′
π,q) (in F ′

π,q).
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Now we show that the above properties also hold in the next step. By

(1) above, for i 6= s1, s2, . . . , sq, every vertex

v ∈ Vi ∩
(
∪π∈Sn;s1,s2,...,sq

V (F ′
π,q)

)
is adjacent to a vertex of color a1, a2, . . . , aq by an edge in F ′

π,q. Hence

c(v) /∈ ∪q
j=1{aj − 1, aj, aj + 1}.

For 1 ≤ i ≤ n, i 6= s1, s2, . . . , sq, let

Ci,q+1 = {a : |c−1(a) ∩ Vi ∩ (∪π∈Sn;s1,s2,...,sq
V (F ′

π,q)| ≥ κ}.

Similarly, it is easy to verify that Ci,q+1 6= ∅, and as observed above,

Ci,q+1 ∩
(
∪q

j=1{aj − 1, aj, aj + 1}
)

= ∅.

Moreover, by Lemma 3, Ci,q+1 ∩ Cj,q+1 = ∅ for i 6= j. As

|∪i/∈{s1,s2,...,sq},1≤i≤2n−2Ci,2| ≤ |{1, 2, . . . , 2n−2}−∪q
j=1{aj−1, aj, aj+1}| ≤ 2n−2q−2,

there exists an index sq+1 such that |Csq+1,q+1| = 1. Assume Csq+1 = {aq+1}.
Note, |aq+1 − aj| ≥ 2 for all j = 1, 2, . . . , q. So, (2) holds.

We consider the restriction of c to the subgraph of G induced by

Uq+1 = ∪π∈Sn;s1,s2,...,sq,sq+1
V (F ′

π,q).

Let

Wq+1 = {v ∈ Uq+1 ∩ Vsq+1 : c(v) = aq+1}.

For each π ∈ Sn;s−1,s2,...,sq+1 , delete from F ′
π,q those components which

contain a vertex in Vπ,q+1 \ Wq+1. Denote the resulting forest by F ′
π,q+1.

Similarly, we have

|Vπ,q+1 \Wq+1| ≤ (2n− (2q + 3))κ.

Hence at most (2n − (2q + 3))κ components of F ′
π,q are deleted. So, (3) is

satisfied for F ′
π,q+1. In addition, it can be easily seen that (1) and (4) also

hold for F ′
π,q+1.
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Assume we have chosen s1, s2, . . . , sn−1 and colors a1, a2, . . . , an−1, and for

the permutation π with π(i) = si for i = 1, 2, . . . , n− 1, we have constructed

the forest F ′
π,n−1. By the discussion above, F ′

π,n−1 has at least b− (n(n−1)
2

+

(n − 1)2)κ > 1 components. Hence, F ′
π,n−1 is not empty. However, vertices

in F ′
π,n−1 ∩ Vπ(n) cannot be colored by any color in ∪n−1

j=1{aj − 1, aj, aj + 1} =

{1, 2, . . . , 2n − 2}. This is an obvious contradiction, which completes the

proof of Theorem 1.
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[19] J. Nešetřil and X. Zhu, On sparse graphs with given colorings and ho-

momorphisms, J. Combin. Theory, Series B 90 (2004) 161 – 172.

[20] D. Sakai, Labeling chordal graphs with a condition at distance two,

SIAM J. Disc. Math., 7 (1994), 133–140.

[21] C. Schwarz and D. Sakai Troxell, L(2, 1)-Labelings of products of two

cycles, Disc. Applied Math. 154 (2006) 1522 – 1540.

[22] M. Whittlesey, J. Georges, and D. auro, On the λ-number of Qn and

related graphs, SIAM J. Disc. Math. 8 (1995) 499 – 506.

15


