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We prove a version of the Krull-Schmidt Theorem which applies to Noethe-
rian modules. As a corollary we get the following cancellation rule: If A, B, C
are nonzero Noetherian modules such that either A⊕C ∼= B⊕C, or An ∼= Bn

for some n ∈ N, then there are modules A′ ≤ A and B′ ≤ B such that A′ ∼= B′

and len A′ = len A = len B′ = len B. Here the ordinal valued length, len A, of
a module A is as defined in [3] and [5]. In particular, A, B, A′ and B′ have
the same Krull dimension, and A/A′ and B/B′ have strictly smaller Krull
dimension than A and B.

1. INTRODUCTION

An old and important problem of module theory is the direct sum cancel-
lation question: Suppose that A,B,C are left modules over a ring R such
that A ⊕ C ∼= B ⊕ C. What can be said about the relationship between
A and B? In particular, are A and B isomorphic? If this happens we say
that direct sum cancellation has occurred.

In general A and B can be quite different. For example, A and C could
be infinite dimensional vector spaces and B = 0. If, however, we require C
satisfy a chain condition then we get the following two contrasting results:

Theorem 1.1. Let A,B,C be modules such that A⊕ C ∼= B ⊕ C.

1. [4] If C is Artinian, then A ∼= B.

2. [2] If C is Noetherian, then A and B have isomorphic submodule series.
That is, there are series 0 = A0 ≤ A1 ≤ · · · ≤ An = A and 0 = B0 ≤ B1 ≤
· · · ≤ Bn = B and a permutation σ of the indices such that Ai/Ai−1

∼=
Bσ(i)/Bσ(i)−1 for i = 1, 2, . . . , n.

* This research was partially supported by a NSERC postdoctoral fellowship.
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This suggests that the cancellation question is complicated for Noethe-
rian modules, and indeed there are easy examples ([2], [7]) of Noetherian
modules A,B,C such that A⊕ C ∼= B ⊕ C, but A 6∼= B.

On the positive side there are certain narrow circumstances in which
direct sum cancellation does occur for Noetherian modules. An example
of this is cancellation within a genus class: Suppose R is a commutative
Noetherian reduced ring of dimension 1, and A,B,C are Noetherian mod-
ules all in the same genus class of R, then A⊕C ∼= B ⊕C implies A ∼= B.
For this result and its generalizations see [6].

In this paper we get new information about the direct sum cancella-
tion question for Noetherian modules by showing how the Krull-Schmidt
Theorem applies to such modules.

The main tool is an ordinal valued measure of the size of Noetherian
modules which generalizes both Krull dimension and length. Specifically,
for a Noetherian module A, its ordinal valued length, lenA, has the usual
meaning if A has finite length, and if lenA is written in normal form,
lenA = ωγ1 + ωγ2 + · · ·+ ωγn , where γ1 ≥ γ2 ≥ · · · ≥ γn are ordinals, then
the Krull dimension of A is γ1.

In terms of this ordinal valued length, our main cancellation result is the
following:

Theorem 1.2. Let A,B and C be Noetherian left modules over a ring
R such that either A ⊕ C ∼= B ⊕ C, or An ∼= Bn for some n ∈ N. Then
there are essential submodules A′ ≤ A and B′ ≤ B such that A′ ∼= B′ and
lenA′ = lenA = lenB′ = lenB. In particular, A, B, A′ and B′ have the
same Krull dimension, and, if A and B are nonzero, A/A′ and B/B′ have
strictly smaller Krull dimension than A and B.

This theorem is an interesting contrast to Theorem 1.1(2): Given Noethe-
rian modules A,B and C such that A⊕C ∼= B⊕C, Theorem 1.1(2) guaran-
tees the existence of isomorphic submodule series in A and B but provides
no indication of the number of factors, the permutation σ or the size of the
subfactor modules. Theorem 1.2, on the other hand, provides a matchup
of submodules of A and B of a specific size. Perhaps some combination
of the techniques used to prove Theorems 1.2 and 1.1(2) can be used to
provide an even more precise description of the relationship between the
modules A and B.

2. MAIN RESULTS

As already explained, the cancellation results we prove come from the
application of the Krull-Schmidt Theorem to the category of Noetherian
modules. We will use the following category theoretic formulation of this
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theorem (more properly called the Krull-Schmidt-Remak-Azumaya Theo-
rem):

Theorem 2.1. [1, Ch. 1, 3.6] Let C be an additive category in which
idempotents split, and A an object of C.

1. If EndC A is local then A is indecomposable in C.
2. If A is a direct sum of objects with local endomorphism rings, then

any two direct sum decompositions of A into indecomposable objects are
isomorphic.

Here we mean that two direct sum decompositions

A ∼= A1 ⊕A2 ⊕ . . .⊕An
∼= B1 ⊕B2 ⊕ . . .⊕Bm

are isomorphic if n = m and there is a permutation σ of the indices such
that Ai

∼= Bσ(i) for i = 1, 2, . . . , n.
For example, suppose C = R-Noeth, the category of Noetherian left

modules over a ring R. Any module in C can be written as a direct sum of
indecomposable modules. Moreover, using Fitting’s Lemma, one can show
that any finite length indecomposable module has a local endomorphism
ring [10, 2.9.8]. Thus we get the usual Krull-Schmidt Theorem: Any finite
length module has a unique (up to isomorphism of decompositions) direct
sum decomposition into indecomposable modules. As an immediate conse-
quence we get direct sum cancellation for finite length modules: If A,B,C
are finite length modules such that A⊕ C ∼= B ⊕ C then A ∼= B. We also
get a multiplicative cancellation rule: If A,B are finite length modules such
An ∼= Bn for some n ∈ N, then A ∼= B.

The Krull-Schmidt Theorem does not apply to the entire category of
Noetherian modules because the endomorphism ring of a Noetherian inde-
composable module is not necessarily local. To circumvent this difficulty
we apply Theorem 2.1 to a new category, R-BNoeth (see Definition 2.5),
whose objects are Noetherian left R-modules, but whose morphisms have
been changed in such a way that indecomposable objects in the category
do, in fact, have local endomorphism rings.

Just as for finite length modules, proving that indecomposable objects in
R-BNoeth have local endomorphism rings proceeds via Fitting’s Lemma.
In the finite length case, the length of the module in question plays a key
role in this lemma. To extend this lemma to Noetherian modules we use the
ordinal valued length which is defined as follows [3], [5]: For a Noetherian
module A, let L(A) be the lattice of all submodules of A. By induction,
define a map λ from L(A) to ordinal numbers such that

λ(A′) = sup{λ(A′′) + 1 | A′ < A′′}
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for all A′ ∈ L(A). Note that λ(A) = 0 and λ is a (strictly) decreasing
function. Then the length of A is lenA = λ(0). The module A has finite
length if and only if lenA is a finite ordinal, and in this case lenA has the
usual meaning.

One important property of ordinal numbers is that any nonzero ordinal
α can be expressed uniquely in Cantor normal form

α = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

where ω is the first infinite ordinal, γ1 > γ2 > · · · > γn are ordinals and
n1, n2, . . . , nn ∈ N.

By adding these normal forms as if they were polynomials we get the
natural sum operation on ordinals [11, Ch. XIV 28]. More precisely, with
suitable re-labeling, the normal forms for nonzero ordinals α and β can be
written using the same strictly decreasing set of ordinal exponents γ1 >
γ2 > · · · > γn:

α = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn β = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

where ni,mi ∈ {0, 1, 2, 3, . . .}. Then the natural sum of α and β is

α⊕ β = ωγ1(m1 + n1) + ωγ2(m2 + n2) + · · ·+ ωγn(mn + nn).

In addition, we define 0⊕ α = α⊕ 0 = α. The natural sum is associative,
commutative and cancellative: (α⊕ γ = β ⊕ γ =⇒ α = β) and (α⊕ γ ≤
β ⊕ γ =⇒ α ≤ β); whereas ordinary ordinal addition is associative, not
commutative and cancellative only on the left: (γ+α = γ+β =⇒ α = β)
and (γ + α ≤ γ + β =⇒ α ≤ β). For further details about ordinal
arithmetic see [9] or [11].

With these facts about ordinal numbers at hand, we can now present
the main properties of the ordinal length function of Noetherian modules
from [3] and [5]. We write KdimA for the Krull dimension of a module
A ∈ R-Noeth.

Theorem 2.2. [5, 2.1, 2.11, 2.3(ii)] Let A,B,C ∈ R-Noeth.

1. If 0 → A→ B → C → 0 is an exact sequence, then

lenC + lenA ≤ lenB ≤ lenC ⊕ lenA.

2. len(A⊕B) = lenA⊕ lenB.
3. If lenA = ωγ1n1 + · · ·+ ωγnnn in normal form, then KdimA = γ1.
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From 1 of this theorem we see that the length of a Noetherian module is
greater or equal to the length of any of its submodules or factor modules.

From 2 and the cancellative property of ⊕, we have that, if A⊕C ∼= B⊕C
or An ∼= Bn for some A,B,C ∈ R-Noeth and n ∈ N, then lenA = lenB.
In particular, from 3, KdimA = KdimB. This result we will strengthen
considerably in Theorem 2.9.

The property of finite length modules at the heart of the proof of Fitting’s
Lemma is that, if A′ ≤ A and lenA′ = lenA, then A′ = A. In general,
this is not true of Noetherian modules. Indeed, many Noetherian modules
contain proper submodules which are isomorphic to themselves. In this
circumstance, the length of the proper submodule is, of course, the same
as the length of the whole module. This motivates the following definition:

Definition 2.3. Given a module A ∈ R-Noeth, any submodule A′ ≤ A
such that lenA′ = lenA is said to be big in A. This situation is denoted
A′ E A.

For an easy example, let I be a nonzero ideal in a Noetherian domain
R. Then for a nonzero element x ∈ I we have R ∼= Rx ≤ I ≤ R, and so
lenR = lenRx ≤ len I ≤ lenR. Thus len I = lenR and I E R.

As we have already noted, if A is a finite length module and A′ E A,
then A′ = A. Other important properties of the relation E are collected in
the next lemma.

Lemma 2.4. Let A,A′, A′′, B,B′ ∈ R-Noeth.

1. If A′′ ≤ A′ ≤ A, then A′′ E A if and only if A′′ E A′ and A′ E A.
2. ψ: A→ B and B′ E B =⇒ ψ−1(B′) E A

3. A′, A′′ E A =⇒ A′ ∩A′′ E A

4. A′ E A and B ≤ A =⇒ B ∩A′ E B

5. A′ E A =⇒ A′ is essential in A

6. A′ E A =⇒ KdimA′ = KdimA.
7. A′ E A and A 6= 0 =⇒ Kdim(A/A′) < KdimA.

Proof.

1. Immediate from the definition.
2. We have B′ ≤ B′+ψ(A) ≤ B, and so lenB′ = len(ψ(A)+B′) = lenB.

Now consider the exact sequence

0 → ψ−1(B′) σ→ A⊕B′ τ→ ψ(A) +B′ → 0
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where σ(a) = (a, ψ(a)) and τ(a, b) = ψ(a) − b for all a ∈ A and b ∈ B′.
Using Theorem 2.2(1,2), we get

lenA⊕ lenB′ = len(A⊕B′)

≤ len(ψ−1(B′))⊕ len(ψ(A) +B′) = len(ψ−1(B′))⊕ lenB′,

and then cancellation from this inequality yields lenA ≤ len(ψ−1(B′)).
Since ψ−1(B′) ≤ A, the opposite inequality is, of course, true and we have
lenA = len(ψ−1(B′)).

3. Apply 2 to the inclusion map ψ: A′ → A.
4. Apply 2 to the inclusion map ψ: B → A.
5. If A′ ⊕ B ≤ A, then lenA′ ⊕ lenB = len(A′ ⊕ B) ≤ lenA. Since

lenA′ = lenA, we can cancel from this inequality to get lenB = 0, that is,
B = 0.

6. Directly from Theorem 2.2(3).
7. From Theorem 2.2(1) and lenA′ = lenA, it follows that len(A/A′) +

lenA ≤ lenA. A simple application of ordinal arithmetic to the normal
forms for len(A/A′) and lenA, together with Theorem 2.2(3) shows that
if Kdim(A/A′) ≥ KdimA, then len(A/A′) + lenA > lenA contrary to the
above inequality. Thus we must have Kdim(A/A′) < KdimA.

All the claims implied in the following definition are easy consequences
of Lemma 2.4(1-4).

Definition 2.5. Let A,B ∈ R-Noeth. A big homomorphism from
A to B is a pair (ψ,A′) where A′ E A and ψ ∈ Hom(A′, B). Two such
big homomorphisms (ψ1, A1) and (ψ2, A2) are equivalent if there is some
A′ E A1 ∩ A2 such that ψ1 |A′= ψ2 |A′ . The equivalence class contain-
ing (ψ,A′) will be written [ψ,A′], and the set of equivalence classes of big
homomorphisms from A to B will be denoted BHom(A,B).

If [ψ1, A1], [ψ2, A2] ∈ BHom(A,B) we define

[ψ1, A1] + [ψ2, A2] = [ψ1 + ψ2, A1 ∩A2] ∈ BHom(A,B).

If [ψ,A′] ∈ BHom(A,B) and [φ,B′] ∈ BHom(B,C), we define

[φ,B′][ψ,A′] = [φ ◦ ψ,ψ−1(B′)] ∈ BHom(A,C).

We define the category R-BNoeth as follows: The objects of R-BNoeth
are the objects of R-Noeth. If A,B ∈ R-BNoeth, the corresponding
morphisms are BHom(A,B). Composition and addition of morphisms are
as above. The identity morphism in BHom(A,A) is [1A, A]. We write
BEndA = BHom(A,A) which is a ring. To avoid confusion between
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R-Noeth and R-BNoeth we will say that modules A,B ∈ R-BNoeth
are B-isomorphic if they are isomorphic in the category R-BNoeth, and
write A ∼=

B
B. Similarly, A ∈ R-BNoeth is B-indecomposable if it is

indecomposable in the category R-BNoeth.

We next prove a version of Fitting’s Lemma appropriate to the category
R-BNoeth.

Lemma 2.6 (Fitting). Let [ψ,A1] ∈ BEndA. For n = 2, 3, 4, . . ., de-
fine inductively An+1 = ψ−1(An) so that ψn: An → A and [ψn, An] =
[ψ,A1]n. Then there is some n ∈ N such that

imψn ⊕ kerψn E A.

Proof. Note that if a ∈ kerψn then ψn(a) = 0 ∈ A1, so a ∈ An+1 and
a ∈ kerψn+1. Thus we have kerψ ≤ kerψ2 ≤ kerψ3 ≤ . . .. Since A is
Noetherian there is some n ∈ N such that kerψn = kerψm for all m ≥ n.
In particular, kerψn = kerψ2n. It follows easily that imψn∩kerψn = 0, so
imψn ⊕ kerψn ≤ A and, of course, len(imψn ⊕ kerψn) ≤ lenA. Applying
Theorem 2.2 to the exact sequence 0 → kerψn → An → imψn → 0, we get

lenA = lenAn ≤ len(kerψn)⊕ len(imψn) = len(imψ ⊕ kerψ).

Thus len(imψn ⊕ kerψn) = lenA.

Theorem 2.7. For a ring R, R-BNoeth is an additive category such
that:

1. A morphism [ψ,A′] ∈ BHom(A,B) is monic if and only if ψ is injec-
tive.
2. A morphism [ψ,A′] ∈ BHom(A,B) is epic if and only if ψ(A′′) E B

for all A′′ E A′.
3. A morphism [ψ,A′] ∈ BHom(A,B) is an isomorphism if and only if it

is both monic and epic, if and only if ψ is injective and lenA = lenB.
4. If A,B ∈ R-BNoeth, then A ∼=

B
B if and only if there are A′ E A and

B′ E B such that A′ ∼= B′. In particular, a module is B-isomorphic with
any of its big submodules.
5. Let A1, A2, . . . , An ∈ R-BNoeth and A = A1 ⊕ A2 ⊕ . . . ⊕ An. For
i = 1, 2, . . . , n, let πi: A → Ai and ιi: Ai → A be the usual projection and
injection homomorphisms. Then the module A together with the morphisms
[πi, A] ∈ BHom(A,Ai) is a product of A1, A2, . . . , An in R-BNoeth, and
A together with the morphisms [ιi, Ai] ∈ BHom(Ai, A) is a coproduct of
A1, A2, . . . , An in R-BNoeth.
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6. Idempotents split in R-BNoeth.
7. A ∈ R-BNoeth is B-indecomposable if and only if A1 ⊕ A2 E A

implies either A1 = 0 or A2 = 0, if and only if BEndA is local.
8. Any 0 6= A ∈ R-BNoeth has a decomposition A1⊕A2⊕ . . .⊕An E A

such that each Ai is B-indecomposable. In particular, A is B-isomorphic
to a finite direct sum of B-indecomposable modules.

For the convenience of the reader we provide abbreviated definitions of
the relevant category theoretic notions using the labels used in the fol-
lowing proof: A category C is preadditive if for all objects A,B ∈ C,
Hom(A,B) is an Abelian group whose operation distributes over composi-
tion of morphisms. A category C is additive if it is preadditive and any
pair of objects of C has a direct sum. A morphism f ∈ Hom(A,B) is monic
(epic) if fg = fh (gf = hf) implies g = h, for all morphisms g, h. A mor-
phism f ∈ Hom(A,B) is an isomorphism if f has a two-sided inverse,
meaning there is some g ∈ Hom(B,A) such that fg = 1B and gf = 1A.
A morphism e ∈ EndA is an idempotent if e2 = e, and then e splits if
there are p ∈ Hom(A,B) and q ∈ Hom(B,A) for some B ∈ C such that
qp = e and pq = 1B . An object A ∈ C is indecomposable if A ∼= A1⊕A2

implies A1 = 0 or A2 = 0.

Proof. For A,B ∈ R-BNoeth, it is clear that BHom(A,B) is an
Abelian group under addition which satisfies the distributive laws with
respect to compositions. Thus R-BNoeth is preadditive. In 5 we will
show that R-BNoeth has finite direct sums (that is, coproducts), and so
R-BNoeth is additive.

1. Suppose f = [ψ,A′] ∈ BHom(A,B) is monic. Let C = kerψ and
g, h ∈ BHom(C,A) be g = [1C , C] and h = [0, C]. Then fg = fh = [0, C]
and so g = h. This means that there is some C ′ E C such that the
identity map and zero map coincide on C ′. This implies C ′ = 0 and since
lenC = lenC ′, we have C = 0 and ψ is injective.

Suppose ψ is injective and we have g = [γ1, C1] and h = [γ2, C2] in
BHom(C,A) such that fg = fh. Then there is some C ′ E C on which
ψ ◦ γ1 = ψ ◦ γ2 coincide. Since ψ is injective, we have γ1 = γ2 on C ′ and
so g = h.

2. Suppose f = [ψ,A′] ∈ BHom(A,B) is epic. Let C = B/ψ(A′) and
σ: B → C be the quotient homomorphism. Let g = [σ,B] and h = [0, B]
which are morphisms in BHom(B,C). Then gf = hf = [0, A′] and so
g = h. This means that there is some B′ E B such that σ(B′) = 0, that
is, B′ ≤ ψ(A′). Thus, in fact, B′ E ψ(A′) E B.

If we have A′′ E A′, then f = [ψ,A′] = [ψ,A′′] and so the same argument
shows ψ(A′′) E B.
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Suppose that ψ(A′′) E B for all A′′ E A′ and we have g = [γ1, B1] and
h = [γ2, B2] in BHom(B,C) such that gf = hf . Then there is some
A′′ E ψ−1(B1) ∩ ψ−1(B2) E A′ on which γ1 ◦ ψ = γ1 ◦ ψ. Hence γ1 and γ2

coincide on ψ(A′′) E B, and so g = h.
3. If ψ is injective and lenA = lenB, then lenψ(A′) = lenB and so

ψ(A′) E B. It is then easy to see that g = [ψ−1, ψ(A′)] ∈ BHom(B,A) is
a two-sided inverse of [ψ,A′]. The remaining claims are immediate from 1
and 2.

4. If [ψ,A′] ∈ BHom(A,B) is an isomorphism, then from 3, we have
A′ ∼= ψ(A′) E B. Conversely, if A′ E A, B′ E B and ψ: A′ → B′ is an
isomorphism, then [ψ,A′] ∈ BHom(A,B) is an isomorphism.

5. This can be checked directly, or by [8, page 18, Theorem 1.2], it suffices
to notice that

n∑
i=1

[ιi, Ai][πi, A] = [1A, A] and [πi, A][ιj , Aj ] =

{
[0, Aj ] if i 6= j

[1Ai
, Ai] if i = j

.

6. Let e2 = e = [ε, A′] ∈ BEndA be an idempotent. Then ε = ε2 on
some A′′ E A. Set p = [ε, A′′] ∈ BHom(A,B) and q = [ι, B] ∈ BHom(B,A)
where B = ε(A′′) and ι: B → A is the inclusion map. Then ι◦ ε = ε on A′′,
which implies qp = e, and ε ◦ ι is the identity on B ∩ ε−1(A′′) E B and so
pq = [1B , B].

7. If A is B-indecomposable and A1 ⊕ A2 E A, then A1 ⊕ A2
∼=
B
A and

so either A1 = 0 or A2 = 0.

Next suppose that A1 ⊕ A2 E A implies A1 = 0 or A2 = 0, and we
have [ψ,A′] ∈ BEndA. From Lemma 2.6, there is some n ∈ N such that
imψn ⊕ kerψn E A. Thus either imψn = 0 and [ψ,A′] is nilpotent, or
kerψn = 0 and [ψ,A′] is invertible by 3. Since every element of BEndA
is invertible or nilpotent, BEndA is a local ring [10, 2.9.9]. The remaining
implication is from Theorem 2.1(1).

8. The proof that A has such a decomposition into B-indecomposables
follows the usual pattern: If A is B-indecomposable, then we are done.
Otherwise, there are nonzero A11, A12 ≤ A such that A11 ⊕ A12 E A.
If both A11 and A12 are B-indecomposable, we are done. Otherwise we
can decompose one of A11 or A12 and then there are nonzero submodules
A21, A22, A23 ≤ A such that A21 ⊕ A22 ⊕ A23 E A. Failure of this process
to stop would give an infinite direct sum in A.

We now have everything we need to apply Theorem 2.1 to the category
R-BNoeth: Any indecomposable object (i.e., B-indecomposable module)
has a local endomorphism ring, and, any nonzero object has a direct sum
decomposition into indecomposables. It follows from Theorem 2.1 that
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such decompositions are unique (up to isomorphism of decompositions in
R-BNoeth). Interpreting this in R-Noeth we get the following:

Theorem 2.8. Let 0 6= A ∈ R-Noeth. Then there is a decomposition
A1 ⊕ A2 ⊕ . . . ⊕ An E A such that each Ai is B-indecomposable, and if
B1⊕B2⊕. . .⊕Bm E A is another such decomposition, then n = m and there
is a permutation σ of the indices such that Ai

∼=
B
Bσ(i) for i = 1, 2, . . . , n.

Just as for finite length modules, we get cancellation rules in R-BNoeth:
If A,B,C ∈ R-BNoeth are such that either A⊕C ∼=

B
B ⊕C, or An ∼=

B
Bn

for some n ∈ N, then A ∼=
B
B. Interpreting this in R-Noeth we get, in a

weakened, but perhaps more useful form, the following:

Theorem 2.9. If A,B,C ∈ R-Noeth are such that either A ⊕ C ∼=
B⊕C, or An ∼= Bn for some n ∈ N, then there are big submodules A′ E A
and B′ E B such that A′ ∼= B′.

Theorem 1.2 in the introduction is just a restatement of this theorem
noting that A′ E A and B′ E B with A′ ∼= B′ implies that lenA = lenA′ =
lenB′ = lenB. From Lemma 2.4(6,7) we have that KdimA = KdimA′ =
KdimB′ = KdimB, and if A,B 6= 0, then Kdim(A/A′) < KdimA and
Kdim(B/B′) < KdimB. From Lemma 2.4(5) we have also that A′ is
essential in A and B′ is essential in B.

REFERENCES
1. H. Bass, “Algebraic K-Theory,” Benjamin, 1968.

2. G. Brookfield, “Direct Sum Cancellation of Noetherian Modules”, J. Algebra 200,
(1998), 207-224.

3. G. Brookfield, “The Length of Noetherian Modules”, to appear in Comm. Algebra.

4. R. Camps and W. Dicks, “On Semilocal Rings”, Isr. J. Math 81, (1993), 203-211.

5. T. H. Gulliksen, A Theory of Length for Noetherian Modules, J. of Pure and Appl.
Algebra 3 (1973), 159-170.

6. R. M. Guralnick and L. S. Levy, Cancellation and Direct Summands in Dimension
1, J. Algebra 142 (1991), 310-347.

7. L. S. Levy, Krull-Schmidt Uniqueness Fails Dramatically over Subrings of Z ⊕ Z ⊕
. . .⊕ Z, Rocky Mountain J. Math. 13 (1983), 659-678.

8. N. Popescu, “Abelian Categories with Applications to Rings and Modules,” Aca-
demic Press, 1973.

9. M. D. Potter, “Sets, An Introduction,” Oxford Univ. Press, 1990.

10. L. Rowen, “Ring Theory, Volume 1,” Academic Press, 1988.
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