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Abstract

For a graph G, let M(G) denote the Mycielski graph of G. The t-th iterated
Mycielski graph of G, Mt(G), is defined recursively by M0(G) = G, and Mt(G)=
M(Mt−1(G)) for t ≥ 1. Let χc(G) denote the circular chromatic number of G.
We prove two main results: 1) If G has a universal vertex x, then χc(M(G)) =
χ(M(G)) if χc(G−x) > χ(G)− 1/2 and G is not a star, otherwise χc(M(G)) =
χ(M(G)) − 1/2; and 2) χc(M

t(Km)) = χ(Mt(Km)) if m ≥ 2t−1 + 2t − 2 and
t ≥ 2.
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1 Introduction

For a positive integer k and two real numbers, 0 ≤ x, y < k, the circular difference

modular k between x and y is defined by

|x − y|k = min {|x − y|, k − |x − y|}.
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Let G = (V, E) be a graph. For two positive integers, k ≥ 2d, a (k, d)-coloring of G

is a function f : V (G) → {0, 1, 2, 3, · · · , k − 1} such that if two vertices u and v are

adjacent, then

|f(u) − f(v)|k ≥ d.

The circular chromatic number is defined as

χc(G) = inf {k/d : there exists a (k, d)-coloring of G}.

It is well-known that for any graph with at least one edge, the infimum in the definition

above can be replaced by minimum (cf. [9]). The circular chromatic number was first

introduced by Vince [7] under the name star chromatic number, and has been studied

intensively since then; Zhu [9] provides a comprehensive survey.

Let χ(G) denote the chromatic number of G. It is true that for any G, we have

(cf. [9]):

χ(G) − 1 < χc(G) ≤ χ(G), and χ(G) = dχc(G)e.

A natural question to ask is for what graphs G does the equality χc(G) = χ(G) hold?

This has been a major research area in the study of circular coloring. In this note,

we shall examine this equality for the Mycielski graphs.

The classic Mycielski’s theorem asserts the existence of triangle-free graphs with

chromatic numbers as large as possible [6]. For a graph G, let [V (G)]′ be a copy of

V (G) (i.e. [V (G)]′ = {v′ : v ∈ V (G)}) and let u be a new vertex. The Mycielski

graph of G, denoted by M(G), has as the vertex set V (G) ∪ [V (G)]′ ∪ {u}, and the

edge set

E(G) ∪ {xy′ : xy ∈ E(G)} ∪ {y′u : y ∈ V (G)}.

In M(G), the new vertex u is called the root, and for each y ∈ V (G), the copy of y,

y′, is called the twin of y, and vice versa. The iterated Mycielski graph is defined by

Mt(G) = M(Mt−1(G)). It is well-known that for any G, χ(M(G)) = χ(G) + 1 and

ω(M(G)) = ω(G), where ω(G) is the clique size of G. Hence, for any t ≥ 1, Mt(K2)

is a triangle-free graph with chromatic number t + 2.

Comparing to the simple formula of the chromatic number for Mycielski graphs,

the circular chromatic number for Mycielski graphs seems more complicated. This

problem has been investigated by Chang, Huang and Zhu [1], Fan [2], and Hajiabol-

hassan and Zhu [4]. One of the main focuses in the previous work is about the circular

chromatic number for the iterated Mycielski graphs of complete graphs.
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A vertex adjacent to every other vertex in G is called a universal vertex. In the

next section, we show that for any graph G with a universal vertex x, χc(M(G)) can

be solely determined by the value of χc(G− x), where G− x is the subgraph induced

by the vertex set V (G)−{x}. In Section 3, we prove that χc(M
t(Km)) = χ(Mt(Km))

for m ≥ 2t−1 + 2t − 2 and t ≥ 2.

2 Graphs with a universal vertex

For a (k, d)-coloring of G, one can view the colors used, 0, 1, 2, · · · , k − 1, in a cyclic

order. For a, b ∈ {0, 1, · · · , k − 1}, let [a, b]k denote the interval from a to b in

this cyclic order. For example, if k ≥ 6, then [2, 5]k = {2, 3, 4, 5} and [5, 2]k =

{5, 6, · · · , k − 1, 0, 1, 2}. Throughout the note, all the calculations are carried out

modulo k. For instance, [4, 8]6 = [4, 2]6.

It is known that if χc(G) = k/d and gcd(k, d) = 1, then any (k, d)-coloring f for

G is onto (cf. [3, 9]). Thus, f can be viewed as a partition of V (G) into non-empty

subsets Vi where Vi = {v : f(v) = i}, i = 0, 1, 2, · · · , k − 1. Using this concept, Fan

[2] obtained the following result.

Lemma 1 If χc(G) = k/d, gcd(k, d) = 1, then degG(v) ≤ |V (G)| − 2d + 1 for any

v ∈ V (G).

For a graph G, let f be a (k, d)-coloring for the Mycielski graph of G. Without

loss of generality, we may assume that f(u) = 0 (u is the root). Let A denote the

interval [k − d + 1, d − 1]k and B = {0, 1, 2, · · · , k − 1} − A. Then f(v′) ∈ B for any

v ∈ V (G). Suppose f(v) ∈ B and f(v′) 6= f(v) for some v ∈ V (G). Then one can

get a (k, d)-coloring f ′ from f by only changing the color for v′, f ′(v′) = f(v); while

others are kept the same. This process can be repeated and the following lemma,

observed in [2], is true.

Lemma 2 In M(G), let u be the root, and for any v ∈ V (G), let v ′ be the twin of

v. Suppose χc(M(G)) = k/d, gcd(k, d) = 1, and d ≥ 2. Then there exists a (k, d)-

coloring f of M(G) such that f(u) = 0, and f(v) = f(v ′) if f(v) /∈ [k − d + 1, d− 1]k.
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In general, the value of χc(M(G)) can not be determined by χc(G), however, the

next result indicates that for graphs with at least one universal vertex x, the value of

χc(M(G)) can be solely determined by χc(G − x).

Theorem 3 Let x be a universal vertex in G. Then

χc(M(G)) =

{

χ(M(G)) − 1/2, if χc(G − x) ≤ χ(G − x) − 1/2, or G is a star;
χ(M(G)), otherwise.

Proof. Let χ(G − x) = m. Then χ(G) = m + 1 and χ(M(G)) = m + 2. For any

v ∈ V (G), we denote the twin of v in M(G) by v′.

If m = 1, then G is a star, x is the center, and χc(M(G)) ≥ 5/2 as M(G) contains

an odd cycle. Moreover, there exists a (5, 2)-coloring for M(G), defined as: f(x) = 1;

f(x′) = 2; f(u) = 0; and for any v ∈ V (G)−{x}, let f(v) = 4 and f(v ′) = 3. Hence,

χc(M(G)) = 5/2 = χ(M(G)) − 1/2.

Assume m ≥ 2. Because degM(G)(x) = |V (M(G))| − 3, by Lemma 1, one gets

χc(M(G)) ∈ {χ(M(G)) − 1/2, χ(M(G))}.

Hence, it suffices to verify the following two claims.

Claim 1. If χc(M(G)) = χ(M(G))−1/2 = (2m+3)/2, then χc(G−x) ≤ (2m−1)/2.

Let f be a (2m + 3, 2)-coloring for M(G), satisfying Lemma 2. Set

Vi = {v : f(v) = i}, i = 0, 1, 2, · · · , 2m + 2.

It suffices to find a (2m − 1, 2)-coloring for G − x. In M(G), the only vertices not

adjacent to x are x′ and u. Hence, if x ∈ Vi, then Vi−1 ∪ Vi+1 ⊆ {u, x′}. As each Vj is

non-empty, by symmetry, we may assume that Vi−1 = {u} and Vi+1 = {x′}. Because

u ∈ V0, so i = 1, implying V0 = {u}, V1 = {x} and V2 = {x′}. Since x′ is adjacent to

all vertices in V (G) − {x}, we conclude that V3 ⊆ {v′ : f(v) = 2m + 2, v ∈ V (G)}.

Now, define a mapping f ′ : V (G − x) → {0, 1, 2, · · ·2m − 2} by:

f ′(v) =

{

f(v′) − 3, if f(v) = 2m + 2;
f(v) − 3, otherwise.

By the definition of Mycielski graphs and the assumption that f is a (2m + 3, 2)-

coloring for M(G), satisfying Lemma 2, it can be easily verified that f ′ is a (2m−1, 2)-

coloring for G − x.
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Claim 2. If χc(G − x) ≤ (2m − 1)/2, then χc(M(G)) = (2m + 3)/2.

It is known that for any graph G, χc(G) ≤ k/d if and only if G admits a

(k, d)-coloring [8]. Hence, we assume that there exists a (2m − 1, 2)-coloring f for

G − x.

Define a mapping f ′ : V (M(G)) → {0, 1, 2, · · · , 2m+2} by: f ′(u) = 0; f ′(x) = 1;

f ′(x′) = 2; and for any v ∈ V (G) − {x},

{

f ′(v) = 2m + 2, f ′(v′) = 3, if f(v) = 2m − 2,
f ′(v) = f ′(v′) = f(v) + 4, if f(v) 6= 2m − 2.

By definition, it can be verified that f ′ is a (2m + 3, 2)-coloring for M(G), as m ≥ 2.

We leave the details to the reader.

Theorem 3 implies that χ(M(Km)) = m+1 for all m ≥ 3 (see [1]). Furthermore,

it also gives the value of the circular chromatic number for odd wheels. The n-wheel

Wn is the join of a cycle Cn and a universal vertex. For odd wheels, Lih et al. [5]

proved that χc(M(W2n+1)) ≤ 9/2, and conjectured that the equality holds for all

n ≥ 2. By the fact that χc(C2n+1) = 5/2, the conjecture can be confirmed directly

from Theorem 3. Note that the circular chromatic number for odd wheels is claimed

to be 4.5 in [4], but no proof was given there.

Corollary 4 For any n ≥ 2, χc(M(W2n+1)) = 9/2.

Fan [2] proved that if G contains three universal vertices, then χc(M(G)) =

χ(M(G)). Hajiabolhassan and Zhu [4] strengthened this result by weakening the

hypothesis to two universal vertices, for graphs with at least three vertices. This can

be further generalized. Let ∆(G) denote the maximum degree of a vertex in G.

Theorem 5 Let G be a graph on n vertices, n ≥ 4. If G has a universal vertex and

a vertex of degree n − 2, then χc(M(G)) = χ(M(G)).

Proof. Let x be a universal vertex of G. Because G has a vertex of degree n− 2, we

have ∆(G − x) ≥ |V (G − x)| − 2. By Lemma 1, χc(G − x) = χ(G − x). Hence, the

result follows from Theorem 3.
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3 Iterated Mycielski Cliques

Hajiabolhassan and Zhu [4] proved that χc(M
t(G)) = χ(Mt(G)) if G has at least 2t+2

universal vertices. This implies:

If m ≥ 2t + 2, then χc(M
t(Km)) = χ(Mt(Km)).

We show that the result in the above can be strengthened to the following:

Theorem 6 If m ≥ 2t−1 + 2t − 2 and t ≥ 2, then χc(M
t(Km)) = χ(Mt(Km)).

To prove Theorem 6, we make use of the following three lemmas. The first one

was proved in [4], the second follows from a result (Theorem 11) in [4], and the third

is from the definition of Mycielski graphs.

Lemma 7 [4] Let G = (V, E) be a graph with χc(G) = k/d, gcd(k, d) = 1. Suppose f

is a (k, d)-coloring for G. Then for each i ∈ {0, 1, 2, · · · , k − 1}, there exists an edge

xy ∈ E(G) such that f(x) = i and f(y) = i + d. The addition is taken modulo k.

Lemma 8 [4] Let G be a graph with m universal vertices, m ≥ 2. If χc(M
t(G)) =

k/d, gcd(k, d) = 1 and t ≥ 1, then

(m − 3)(d − 1) ≤ 2t − 2.

Lemma 9 Let X be a clique of size k in G and x ∈ X. Let x∗ be a copy (i.e. the

twin or the twin of the twin, etc.) of x in any level of Mt(G). Then (X − {x}) ∪ x∗

induces a clique of size k in Mt(G).

Proof of Theorem 6) Assume to the contrary that χc(M
t(Km)) = k/d <

χ(Mt(Km)), where gcd(k, d) = 1. Then d ≥ 2. Let V (Km) = X = {x1, x2, · · · , xm}.

We first claim that d 6= 2. Suppose to the contrary that d = 2. Then,

χc(M
t(Km)) = k/2 = χ(Mt(Km)) − 1/2 = (2t + 2m − 1)/2.

So, k = 2t + 2m − 1.
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Let f be a (k, 2)-coloring for Mt(Km), satisfying Lemma 2 (regarding Mt(Km)

as the Mycielski graph of Mt−1(Km)). Without loss of generality, we assume f(x1) <

f(x2) < · · · < f(xm). Let U be the set of all the roots (i.e., roots and their copies in

various levels) in Mt−1(Km). In Mt(Km) = M(Mt−1(Km)), let U ′ and X ′ be the twins

of U and X, respectively, let u∗ be the new root, and U ∗ = U ∪ U ′ ∪ {u∗}. Then,

|U | = 2t−1 − 1 and |U∗| = 2t − 1. Set

A = {v ∈ V (Mt−1(Km)) : f(v) ∈ {k − 1, 0, 1}} and B = V (Mt−1(Km)) − A.

Hence, A ∩ X ⊆ {x1, xm}, and xl ∈ B for any 2 ≤ l ≤ m − 1. So, by Lemma 2,

f(x′

l) = f(xl) for all 2 ≤ l ≤ m − 1.

Define the following:

x̂i =

{

xi, if xi ∈ B,
x′

i, if xi ∈ A;

û =

{

u, if u ∈ B,
u′, if u ∈ A;

X̂ = {x̂i : i = 1, 2, · · · , m}; and Û = {û : u ∈ U}.

Then f(X̂), f(Û) ⊆ [2, k − 2]k and |Û | = |U | = 2t−1 − 1. Moreover, |f(X̂)| = m

except when f(x′

1) = f(x′

m), when |f(X̂)| = m − 1.

Line up the vertices in X̂ by c1, c2, c3, · · · such that f(c1) ≤ f(c2) ≤ f(c3) ≤ · · ·.

Let f(x′

1) = f(ca) and f(x′

m) = f(cb) for some a and b. It suffices to consider the

following three cases.

Case 1. |a − b| ≥ 2, or |a − b| = 1 with x1 ∈ B or xm ∈ B Then |f(X̂)| = m. De-

fine the intervals Ii, for i = 1, 2, · · · , m − 1, by:

Ii = [f(ci) + 1, f(ci+1) − 1]k.

Then |Ii| ≥ 1 for all i. By Lemma 9, the fact f(x′

l) = f(xl) for all 2 ≤ l ≤ m − 1,

and the assumption for this case, we conclude that if x̂j = ci for some i and j, then

the colors in the set [f(ci)− 1, f(ci) + 1]k ∩ f(B) can only be assigned to Û or copies

of xj in various levels in Mt(G). This implies:

If Ii ∩ f(Û) = Ø, then |Ii| ≥ 2. (3.1)
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Let M = m − 1. Because |Û | ≤ 2t−1 − 1, among these M intervals of Ii’s, at least

M − (2t−1 − 1) of them have |Ii| ≥ 2. Hence, we get

k = 2m + 2t − 1 ≥ 3 + |f(X̂)| +
M
∑

i=1

|Ii|

≥ 3 + |f(X̂)| + 2t−1 − 1 + 2(M − 2t−1 + 1)

= |f(X̂)| − 2t−1 + 2M + 4 (3.2)

As |f(X̂)| = m and M = m−1, calculation from (3.2) implies that m ≤ 2t−1 +2t−3,

a contradiction.

Case 2. f(x′

1) = f(x′

m) Then f(x1) = 1, f(xm) = k − 1, |f(X̂)| = m − 1, and

3 ≤ f(x′

1) = f(x′

m) ≤ k − 3.

By Lemma 9, f(c1) ≥ 3 and f(cm) ≤ k − 3. Since f(x′

1) = f(x′

m) = f(cj) =

f(cj+1) for some 1 ≤ j ≤ m − 1, we define m intervals Ii by: I1 = [2, f(c1) − 1]k;

Im = [f(cm) + 1, k − 2]k; and

Ii+1 = [f(ci) + 1, f(ci+1) − 1]k, i = 1, 2, 3, j − 1;
Ii = [f(ci) + 1, f(ci+1) − 1]k, i = j + 1, j + 2, · · · , m − 1.

Then |Ii| ≥ 1 for all i, and similar to Case 1, both (3.1) and (3.2) hold, for M = m. As

|f(X̂)| = m−1, calculation from (3.2) implies that m ≤ 2t−1 +2t−4, a contradiction.

Case 3. |a − b| = 1 and {x1, xm} ⊆ A Then f(x1) = 1, f(xm) = k − 1, and

|f(X̂)| = m. Assume b = a + 1. (The case for a = b + 1 is symmetric.)

Assume 2 ≤ a ≤ m − 2. By Lemma 9, f(c1) ≥ 3 and f(cm) ≤ k − 3. Define m

intervals by: I1 = [2, f(c1) − 1]k; Im = [f(cm) + 1, k − 2]k; and

Ii+1 =

{

[f(ci) + 1, f(ci+1) − 1]k, if i = 1, 2, · · · , a − 1;
[f(ci+1) + 1, f(ci+2) − 1]k, if i = a, a + 1, · · · , m − 2.

Then |Ii| ≥ 1 for all i, and similar to Case 1, both (3.1) and (3.2) hold, for M = m.

As |f(X̂)| = m, calculation from (3.2) implies that m ≤ 2t−1 +2t−5, a contradiction.

If a = 1, then f(cm) ≤ k − 3. (The case for a = m − 1 is symmetric.) Define

(m − 1) intervals Ii by: Im−1 = [f(cm) + 1, k − 2]k; and

Ii = [f(ci+1) + 1, f(ci+2) − 1]k, i = 1, 2, · · · , m − 2.
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Again, an easy calculation, similar to the above, on these m − 1 intervals leads to

m ≤ 2t−1 + 2t − 3, a contradiction.

We conclude, from the above three cases, that d 6= 2.

Assume d ≥ 3. By the assumptions that m ≥ 2t−1 + 2t − 2 and t ≥ 2, and by

Lemma 8, it must be that m = 4, t = 2 and d = 3. Assume χc(M
2(K4)) = k/3. Let

f be a (k, 3)-coloring for M2(K4). Denote the vertices of K4 by X = {x1, x2, x3, x4},

and their corresponding twins in M(K4) by Y = {y1, y2, y3, y4}. Let v be the root of

M(K4). That is, V (M(K4)) = X ∪ Y ∪ {v}. For each w ∈ V (M(K4)), let w′ be the

twin of w in M2(K4). We assume that f satisfies Lemma 2. Set

A = {w ∈ V (M(K4)) : f(w) ∈ {k − 1, k − 2, 0, 1, 2}} and B = V (M(K4)) − A.

Hence, A ∩ X ⊆ {x1, x4}, and x2, x3 ∈ B. By Lemma 2, f(x′

2) = f(x2) and f(x′

3) =

f(x3). Note that, f(x3) ≤ k − 4, since f(x4) ≤ k − 1. If f(x2) ≥ 4, then we have

four distinct colors {f(x2)− 1, f(x2) + 1, f(x3)− 1, f(x3) + 1}, while only three sets

of vertices, {y2, y
′

2} (either f(y2) = f(y′

2) or y2 ∈ A), {y3, y
′

3} and {v, v′}, that can be

assigned by these colors. This contradicts that f is onto.

So, it must be that f(x2) = 3, which implies f(x1) = 0. Then the colors 1 and

2 can only be possibly assigned to the vertex v, contradicting that f is onto.

An immediate corollary of Theorem 6 is the confirmation of the following con-

jecture, for the case t = 2.

Conjecture 1 [1] Let t be a positive integer. If m ≥ t + 2, then χc(M
t(Km)) =

χ(Mt(Km)).

Note that Conjecture 1 has been confirmed by Chang et al. [1] for the cases

when t = 1, 2, with involved calculations. A shorter proof for the case t = 1 was given

by Fan [2]. For t ≥ 3, the conjecture remains open. In particular, the following is of

interest.

Problem 2 For any t ≥ 1, what is n(t), the smallest positive integer n such that the

equality χc(M
t(Km)) = χ(Mt(Km)) holds for all m ≥ n?
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It is known [1] that n(1) = 2 and n(2) = 4. For t ≥ 3, combining a result in [1]

with Theorem 6, we have

t + 2 ≤ n(t) ≤ 2t−1 + 2t − 2,

however, the exact value of n(t) is still unknown and worthy of further investigation.
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