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Abstract. We show that finitely generated modules over a commu-

tative Noetherian ring can be classified, up to isomorphism of sub-

module series, in a manner analogous to the classification of integers
as products of prime numbers. In outline, two such modules have

isomorphic submodule series if and only if 1) the set of minimal as-
sociated prime ideals of these modules coincide, 2) the multiplicities

of these modules at these prime ideals coincide, and 3) the modules

represent the same element in a certain group corresponding to the
above set of prime ideals. Regarding condition 3), we show that, in
the very special case that the ring is a Dedekind domain, the group
corresponding to the prime ideal 0 is the ideal class group of the ring.

1. Introduction

Let R be a unital ring, R-Mod the category of left R-modules, and
R-Noeth the category of Noetherian left R-modules. It is the hope of
module theorists that the structure of these categories can be understood
by considering the way in which a general module can be constructed from
some small family of simpler modules. The prototype of this scheme is the
classification of finitely generated Abelian groups, that is, Z-Noeth. Here
any such module is isomorphic to a finite direct sum of modules of the form
Z/Zpn for p, n ∈ N with p prime, and of copies of Z itself.

A consequence of this classification (or perhaps part of its proof) is
the existence of certain cancellation rules that hold in the category. For
example, let A,B,C,A1, A2, B1, B2 ∈ Z-Noeth, then

• Cancellation: If A⊕ C ∼= B ⊕ C then A ∼= B.
• Multiplicative Cancellation: If An ∼= Bn for some n ∈ N, then
A ∼= B.

Much effort has been directed toward studying direct sum decomposi-
tions with the hope of generalizing this special case to more complicated
rings. Unfortunately, almost no category of modules can be classified as
easily as Z-Noeth, and the failure of the above rules in, what one would
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think of as well behaved categories, such as R-Noeth when R is a com-
mutative Noetherian ring, has been well documented [15]. This leaves the
door open to the consideration of coarser classifications of modules – clas-
sification up to some other equivalence than isomorphism, or classification
based on something other than direct sum decomposition.

In this paper, we will investigate a classification of modules in which
the direct sum operation is replaced by extensions. Thus we consider a
module B to be “composed” of modules A and C if there is a short exact
sequence 0→ A→ B → C → 0. More generally, we consider two modules
A and B to be equivalent if they can be constructed from the same set of
modules using extensions. Specifically, A and B are equivalent, denoted
A ∼ B, if they have isomorphic submodule series, that is, there are
series 0 = A0 ⊆ A1 ⊆ · · · ⊆ An = A and 0 = B0 ⊆ B1 ⊆ · · · ⊆ Bn = B
and a permutation of the indices σ, such that Ai/Ai−1

∼= Bσ(i)/Bσ(i)−1 for
i = 1, 2, . . . , n.

Of course, knowing that A ∼ B is much weaker than knowing that
A ∼= B. But what we lose on the coarseness of the classification we gain in
cancellation rules. Some hint of this can be seen in the following theorem:

Theorem 1.1. [4, 5.5] Suppose R is a ring and A,B,C ∈ R-Mod. If
A ⊕ C ∼= B ⊕ C with C ∈ R-Noeth, then A and B have isomorphic
submodule series.

The thing to notice here is that we make no hypothesis whatsoever on
the ring R or the modules A and B.

The goal of this paper is to show that, when R is a commutative Noether-
ian ring, a partial classification of Noetherian modules up to isomorphism of
submodule series is possible, and that this classification has many parallels
with the classification of Z-Noeth described above.

The natural way to prove this is to record the information about these
equivalence classes in a commutative monoid: The class of ∼-equivalence
classes, together with the operation induced on these equivalence classes by
the direct sum, forms a commutative monoid, which we will callM(R-Mod)
([4, 3.5]). We write [A] ∈ M(R-Mod) for the ∼-equivalence class of mod-
ules which contains A ∈ R-Mod. The image of R-Noeth in M(R-Mod)
is a submonoid which we will call M(R-Noeth). We note that any monoid
has a preorder ≤ defined by a ≤ b if there is some c such that a + c = b.
In the special case of M(R-Mod) and M(R-Noeth) we have [A] ≤ [B]
if and only if there are submodule series 0 = A0 ⊆ A1 ⊆ · · · ⊆ An = A
and 0 = B0 ⊆ B1 ⊆ · · · ⊆ Bm = B and an injective map σ, such that
Ai/Ai−1

∼= Bσ(i)/Bσ(i)−1 for i = 1, 2, . . . , n (3.2(2)).
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Classifying Noetherian modules up to isomorphism of submodule series
is then the same as understanding the structure of M(R-Noeth). The
main tools here are the cancellation rules which hold in M(R-Noeth),
together with certain homomorphisms on M(R-Noeth) and certain em-
bedded Abelian groups:

• There is a surjection, called radann, from M(R-Noeth) to the set
of radical ideals of R defined by radann([A]) = rad(annA) for all
A ∈ R-Noeth (Section 4). Thus for a module A ∈ R-Noeth, the
prime ideals which are minimal over annA are determined by [A].
• For each prime ideal P of R, there is a monoid homomorphism
φ[R/P ] on M(R-Noeth) which records a “multiplicity” with respect
to P . Specifically, forA ∈ R-Noeth, φ[R/P ]([A]) counts the number
of times R/P can appear as a factor in a submodule series for A
(3.7).
• For each element [A] of the monoid there is an associated Abelian

group G[A] (2.6) which embeds in M(R-Noeth) as the set of ele-
ments [B] ∈M(R-Noeth) such that [A] ≤ [B] ≤ [A].

With these tools at hand, we can now describe the classification of Noe-
therian modules up to isomorphism of submodule series:

Theorem 1.2. (5.4) Suppose R is a commutative Noetherian ring, and
A,B ∈ R-Noeth. Then A and B have isomorphic submodule series (equiv-
alently, A ∼ B or [A] = [B]) if and only if

(1) radann[A] = radann[B]. This condition is equivalent to the set of
prime ideals {P1, P2, . . . , Pn} which are minimal over annA being
the same as the set of primes which are minimal over annB. Either
condition implies that G[A] = G[B].

(2) φ[R/Pi]([A]) = φ[R/Pi]([B]) for i = 1, 2, . . . , n with {P1, P2, . . . , Pn}
as in (1). Conditions (1) and (2) imply that [A] ≤ [B] ≤ [A].

(3) A and B represent the same element in the group G[A] = G[B].

This theorem is not so foreign as it seems — all of its features already
occur in the classification of integers as products of prime numbers: Ev-
ery nonzero integer N ∈ Z can be written in the form N = upn1

1 pn2
2 . . . pnnn

where {p1, p2, . . . , pn} are distinct (positive) prime numbers, ni is the “mul-
tiplicity” of the prime pi in N , and u is an element of the group of units
{+1,−1} of Z. Two integers are equal if and only if the corresponding
sets of prime numbers, multiplicities and group elements match up almost
as described in the theorem. (To make this parallel precise one has only
to notice that Z∗ = Z \ {0} with multiplication as operation is a primely
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generated refinement monoid just as M(R-Noeth) is, and so the theory in
Section 2 applies to both.)

As mentioned above, the proof of Theorem 1.2 depends very much on the
cancellation properties of M(R-Noeth): Though M(R-Noeth) is seldom
cancellative, it is always strongly separative (2.3, 3.9), meaning that, for any
A,B,C ∈ R-Noeth, [A] + [C] = [B] + [C] and [C] ≤ [A] imply [A] = [B].
And though M(R-Noeth) does not have multiplicative cancellation exactly
analogous to the property of Z-Noeth described above, it does satisfy (3.9,
2.13(P5)) n[A] ≤ n[B] implies [A] ≤ [B] for any A,B ∈ R-Noeth and
n ∈ N. Many other properties of M(R-Noeth) appear in 3.9 and 2.13.

Of course, Theorem 1.2 is not really a complete classification unless it
is known what G[A] is for each A ∈ R-Noeth. It follows from 1.2(1) that
G[A] = G[R/S] where S = rad(annA), so there is really only one such group
for each radical ideal of R. In the special case that R is a Dedekind domain
we will show (6.3) that the group G[R] is isomorphic to the ideal class group
of the ring. So there is some important nontrivial structure recorded in
these groups and hence in M(R-Noeth). This also means that, in general,
calculating G[A] will be at least as difficult as calculating the ideal class
groups of a Dedekind domain.

2. Primely Generated Refinement Monoids

All monoids in this paper will be commutative, so we will write + for the
monoid operation and 0 for the identity element of all monoids. We refer
the reader to [14] and [13] for the standard concepts of monoid theory.

We collect here some notation we will need:
Notation 2.1. Let M be a monoid and a, b ∈M .

• a ≤ b ⇐⇒ ∃ c ∈M such that a+ c = b
• a� b ⇐⇒ a+ b ≤ b
• a ≡ b ⇐⇒ a ≤ b and b ≤ a
• {≡ a} = { c ∈M | c ≡ a }
• a ∝ b ⇐⇒ ∃ n ∈ N such that a ≤ nb
• {∝ a} = { c ∈M | c ∝ a }
• a � b ⇐⇒ b ∝ a ∝ b
• {� a} = { c ∈M | c � a }

The relation ≤ is a preorder on M . For the monoid (Z+,+), the set of
nonnegative integers, this preorder coincides with the usual order. If M is
a group, then we have a ≤ b for all a, b ∈M . So for the monoid (Z,+), the
preorder ≤ is not the same as the usual order on the integers.

The relation � is transitive, ∝ is a preorder, and ≡ and � are con-
gruences. These relations behave well under monoid homomorphisms: If
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φ: M → N is monoid homomorphism, and a, b ∈ M , then a ≤ b implies
φ(a) ≤ φ(b), a� b implies φ(a)� φ(b), etc.

Let I be a submonoid of a monoid M and x, y ∈ I. It is trivial that if
x ≤ y with respect to the preorder in I, then x ≤ y with respect to the
preorder in M . The converse may not be true: Consider, for example, the
submonoid Z+ ⊆ Z. Thus we will distinguish certain submonoids which
behave well with respect to the preorder ≤:
Definition 2.2. An order ideal [4, 2.1] of a monoid M is a submonoid
I ⊆M such that

(∀x, y ∈M) (x ≤ y ∈ I =⇒ x ∈ I).

Here ≤ is the preorder defined with respect to M .
The following facts are easy to check:
• I ⊆M is an order ideal if and only if

(∀x, y ∈M) (x+ y ∈ I ⇐⇒ x, y ∈ I).

• If I is an order ideal of a monoid M , then x ≤ y in I if and only if
x ≤ y in M .
• The intersection of a family of order ideals is again an order ideal.
• The order ideal generated by an element a ∈M is {∝ a}.

Among the many cancellation properties that can occur in monoids,
the most important, after cancellation itself, are separativity and strong
separativity:
Definition 2.3. [1], [3], [4] A monoid M is separative if it satisfies any
of the following equivalent conditions:

S1. (∀a, b ∈M) (2a = a+ b = 2b =⇒ a = b)
S2. (∀a, b, c ∈M) ((a+ c = b+ c and c ∝ a, b) =⇒ a = b)
S3. (∀a ∈M) ({� a} is cancellative)
S4. (∀a, b ∈M)(∀m,n ∈ N) ((ma = mb and na = nb)

=⇒ (ka = kb where k = gcd(m,n)))
A monoid M is strongly separative if it satisfies any of the following

equivalent conditions:
T1. (∀a, b ∈M) (2a = a+ b =⇒ a = b)
T2. (∀a, b, c ∈M) ((a+ c = b+ c and c ≤ a) =⇒ a = b)
T3. (∀a, b, c ∈M) ((a+ c = b+ c and c ∝ a) =⇒ a = b)
T4. (∀a, b ∈M)(∀n ∈ N) ((n+ 1)a = na+ b =⇒ a = b)
It is obvious from S1 and T1 that strong separativity implies separativity

for any monoid.
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Definition 2.4. Let M be a monoid and a ∈M .

(1) a is regular if 2a ≤ a (equivalently, 2a ≡ a or a� a).
(2) a is free if for all m,n ∈ N, ma ≤ na implies m ≤ n.

Evidently, an element of a monoid cannot be both free and regular, but
it is possible for an element to be neither. For example, in the monoid
M = {0, 1,∞}, where 1 + 1 = 1 +∞ = ∞ +∞ = ∞, the element 1 is
neither free nor regular. Notice that, by construction, this monoid is not
separative.

Proposition 2.5. Let a be an element of a monoid M .

(1) If M is separative then a is free or regular.
(2) If M is strongly separative then a is free or a ≤ 0.

Proof.

(1) If M is separative and a is not free, then there are m,n ∈ N such
that m > n and ma ≤ na. In particular, (n + 1)a + x = na for
some x ∈M . Thus we have (2a+x) + (n− 1)a = a+ (n− 1)a with
(n− 1)a ∝ a ≤ 2a+ x. Using 2.3(S2), we get 2a+ x = a and hence
2a ≤ a, that is, a is regular.

(2) If M is strongly separative, then it is separative and a is either free
or regular. But if 2a ≤ a, then (a + x) + a = a for some x ∈ M ,
with a ∝ a + x. Using 2.3(T3), we get a + x = 0. In particular,
a ≤ 0. �

Associated with any element u of any monoid is an Abelian group Gu
which we construct as follows:

Definition 2.6. Let u be an element of a monoid M . Define a congruence
∼u on M by

a ∼u b ⇐⇒ u+ a = u+ b

for a, b ∈ M . We will write [a]u for the ∼u-congruence class containing
a ∈ M . Define Gu = { [a]u | a � u }. One can easily show that Gu is the
set of all units (invertible elements) of the quotient monoid M/∼u and so
is an Abelian group.

The following facts about Gu are easy to check:

Lemma 2.7. Let u, v, w be elements of a monoid M .

(1) If v ≡ u, then ∼v and ∼u coincide and hence Gu = Gv.
(2) If M is separative and v � u, then ∼v and ∼u coincide and hence

Gu = Gv.
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(3) The map Ω: Gu → {≡ u} defined by Ω([x]u) = u+ x is a bijection
(but not in general a homomorphism). If we define the operation
2u on {≡ u} by a2u b = u+ x+ y where a = u+ x and b = u+ y,
then the set {≡ u} with operation 2u is a group isomorphic to Gu,
with identity u.

(4) If M is strongly separative, the operation 2u can be expressed in a
simpler way: a2u b = c where a+ b = u+ c.

(5) If u ≤ v, then the map σuv: Gu → Gv defined by σvu([a]u) = [a]v
is a group homomorphism. Further, if u ≤ v ≤ w, then σwu =
σwv ◦ σvu.

From 3, we see that we could have defined Gu to be ({≡ u},2u, u). The
advantage of this is that the elements of the group are then elements of M ,
rather than congruence classes. The disadvantage is that if v ≡ u, then
we have Gu = Gv as sets, but the operations 2u and 2v are, in general,
different.
Definition 2.8. A monoid M has refinement [21], [8], [9], [22], if for
all a1, a2, b1, b2 ∈M with a1 +a2 = b1 + b2, there exist c11, c12, c21, c22 ∈M
such that

a1 = c11 + c12 a2 = c21 + c22

b1 = c11 + c21 b2 = c12 + c22.

Definition 2.9. Let M be a monoid and a, p ∈M .
(1) p is prime if for all a1, a2 ∈ M , p ≤ a1 + a2 implies p ≤ a1 or

p ≤ a2.
(2) a ∈M is primely generated if it is a sum of prime elements.
(3) M is primely generated if all its elements are primely generated.

Notice that, by this definition, any element p ≤ 0 is prime. Also, if p ≡ q,
then p is prime if and only if q is prime. It is easy to check that, if p ∈M
is prime and p = a1 + a2, then p ≡ a1 or p ≡ a2.
Lemma 2.10. Let I be an order ideal of a refinement monoid M . Then
I has refinement, and

(1) If p ∈ I, then p is a prime (free) element of M if and only if p is
a prime (free) element of I.

(2) If M is primely generated, then so is I.
For an example, consider the submonoid I = {0, 2, 3, 4, . . . } = Z

+ \ {1}
of the refinement monoid Z+. The submonoid I is not an order ideal, and
the elements 2 and 3 are prime in I, but not in Z+.

We collect in the next three lemmas some properties of primely generated
refinement monoids which are proved in [6].
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Lemma 2.11. [6, 5.4, 5.5] Let p be a prime element of a refinement monoid
M . If p 6≤ 0, there is a monoid homomorphism φp: M → Z

∞ defined by

φp(a) = sup{n ∈ Z+ | np ≤ a }

for all a ∈M . Here Z∞ = Z
+ ∪ {∞} with n+∞ =∞ for all n ∈ Z+ and

∞+∞ =∞. Further, φp(p) = 1 if and only if p is free, and φp(p) =∞ if
and only if p is regular.

In the following lemma, a subset X of a monoid M is incomparable if
(x1 ≤ x2 =⇒ x1 = x2) for all x1, x2 ∈M .

Lemma 2.12. [6, 5.8, 5.9, 5.18] Let a be a primely generated element in
a refinement monoid M . Then a is either free or is regular.

If a is free, then there is an incomparable set of (free) prime elements
{p1, p2, . . . , pn} ⊆M such that

a ≡ φp1(a)p1 + φp2(a)p2 + . . .+ φpn(a)pn,

with φpi as in 2.11. The primes p1, p2, . . . , pn are uniquely determined up
to ≡-congruence. Moreover, the map ψ: Nn ×Ga → {� a} defined by

ψ(n1, n2, . . . , nn, [x]a) = n1p1 + n2p2 + . . .+ nnpn + x

is a semigroup isomorphism.

Theorem 2.13. Let M be a primely generated refinement monoid. Then
M is separative. If in addition, for all primes p in the generating set, either
p is free or p ≤ 0, then M is strongly separative. In either case, M has the
following properties:
Pseudo-cancellation properties:

P1. (∀a, b, c ∈M) (a+ c ≤ b+ c =⇒ (∃a1 � c such that a ≤ b+ a1))
P2. (∀a, c1, c2 ∈M) (a� c1 + c2 =⇒

(∃a1, a2 such that a = a1 + a2, a1 � c1 and a2 � c2))

Archimedean properties:

P3. (∀a, b ∈M) ((∀n ∈ N)(na ≤ b) =⇒ a� b)
P4. (∀a, b ∈M) ((∀n ∈ N)(na ≤ (n+ 1)b) =⇒ a ≤ b)

Unperforation properties:

P5. (∀a, b ∈M)(∀n ∈ N) (na ≤ nb =⇒ a ≤ b)
P6. (∀a, b ∈M)(∀n ∈ N) (na ≡ nb =⇒ a ≡ b)

Join property:

P7. (∀c1, c2 ∈M) (∃d such that c1, c2 ≤ d and
(∀a ∈M) (c1, c2 ≤ a =⇒ d ≤ a))
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The names pseudo-cancellation, and unperforation are from Wehrung
[22], [23], [24]. P2 is a consequence of P1 in any refinement monoid.

Properties P3-P6 are trivially true of the monoid Z∞ defined in 2.11.
They are true also of M because, for each prime p in the generating set,
2.11 provides a homomorphism φp: M → Z

∞. See [6, Section 5] for details.
If M happened to be partially ordered by ≤, then property P7 would

say that (M,≤) is a join-semilattice.
Corollary 2.14. Let u, u1, u2, . . . , un be elements of a primely generated
refinement monoid M such that u = u1 + u2 + . . . + un. Then the map
Γ: Gu1 ⊕Gu2 ⊕ . . .⊕Gun → Gu defined by

Γ([a1]u1 , [a2]u2 , . . . , [an]un) = [a1 + a2 + . . .+ an]u

is a surjective group homomorphism.

Proof. The map Γ is the sum of the homomorphisms σuui for i = 1, 2, . . . , n
as in 2.7(5), so is itself a homomorphism. If [a]u ∈ Gu then a � u. Using
2.13(P2) inductively we can find write a = a1+a2+. . .+an with ai � ui and
hence [ai]ui ∈ Gui for all i. Thus Γ([a1]u1 , [a2]u2 , . . . , [an]un) = [a]u. �

3. Extension Properties

Until further notice, R is any ring, and R-Mod the category of left
R-modules. A Serre subcategory of R-Mod is a full subcategory S of
R-Mod such that if 0 → A → B → C → 0 is a short exact sequence in
R-Mod, then B ∈ S if and only if A,C ∈ S. The main example of a Serre
subcategory is R-Noeth, the subcategory of all Noetherian left R-modules.

As described in [3], [4] and [5], associated with each Serre subcategory S
is a refinement monoid M(S) and a map ΨS: S→M(S) with the following
universal property: If N is a monoid and Λ: S→ N satisfies the conditions

i) Λ(0) = 0,
ii) Λ(B) = Λ(A) + Λ(C) whenever 0 → A → B → C → 0 is a short

exact sequence in S,
then there is a unique monoid homomorphism λ: M(S) → N such that
Λ(A) = λ(ΨS(A)) for all A ∈ S. Maps satisfying the conditions i and ii
above are said to respect short exact sequences in S.

We should point out that the monoid M(S) may not be a set. In fact for
any nontrivial ring R, M(R-Mod) is always a proper class [3, 16.13]. We
will see, for example, that if R is a field, then M(R-Mod) is isomorphic
to (Card,+, 0), the class of cardinal numbers with cardinal addition as
operation. Though Card is not a set, it has the property that for any
α ∈ Card, {∝ α} is a set. Similarly for any ring R and A ∈ R-Mod, the
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order ideal {∝ [A]} is a set [3, 16.14]. Further, since the class of isomorphism
classes in R-Noeth is a set, M(R-Noeth) is a set for any ring R.

We will see shortly that, for any Serre subcategory S, it is convenient to
consider M(S) to be contained in M(R-Mod), thus we will focus first on
the properties of M(R-Mod). We will write [A] rather than ΨR-Mod(A)
for the image of a module A ∈ R-Mod in M(R-Mod).

From [4, Section 3] and [5, Section 4], for A,B ∈ R-Mod we have that
[A] = [B] if and only if A and B have isomorphic submodule series,
that is, there are submodule series 0 = A0 ⊆ A1 ⊆ · · · ⊆ An = A and
0 = B0 ⊆ B1 ⊆ · · · ⊆ Bn = B and a permutation of the indices σ, such
that Ai/Ai−1

∼= Bσ(i)/Bσ(i)−1 for i = 1, 2, . . . , n.
We will also need module level descriptions of the relations [A] ≤ [B],

[A] ≤ [B1] + [B2], [A1] + [A2] = [B1] + [B2] and others. We will avoid
considerable notational difficulty in these descriptions by using the following
definition:
Definition 3.1. [5, 4.1] A partition is a finite indexed set of modules
A = (Ai)i∈I .

Let A = (Ai)i∈I and B = (Bj)j∈J be two partitions. Then A and B are
isomorphic if there is a bijection σ: I → J such that Ai ∼= Bσ(i) for all
i ∈ I, and A is a subpartition of B if there is an injection σ: I → J such
that Ai ∼= Bσ(i) for all i ∈ I.

A partition of A ∈ R-Mod is a partition A = (Ai)i∈I such that there
is a submodule series 0 = A′0 ⊆ A′1 ⊆ · · · ⊆ A′n = A and a bijection
σ: I → {1, 2, .., n} with Ai ∼= A′σ(i)/A

′
σ(i)−1 for all i ∈ I. A subpartition

of A ∈ R-Mod is a subpartition of a partition of A
A partition B = (Bj)j∈J is a refinement of partition A = (Ai)i∈I if J

can be written as a disjoint union of subsets (Ji)i∈I such that for all i ∈ I,
(Bj)j∈Ji is a partition of Ai. Note that if A is a partition of A ∈ R-Mod,
then any refinement of A is also a partition of A. Further, if A and B are
isomorphic partitions, then any refinement of A is induces an isomorphic
refinement of B and vice versa.

Using these definitions, for A,B ∈ R-Mod we have [A] = [B] if and only
if A and B have isomorphic partitions. The Schreier refinement theorem
[10, 3.10] says that if A and A′ are two partitions of a module A ∈ R-Mod,
then A and A′ have isomorphic refinements. It follows easily from this
theorem that M(R-Mod) is a refinement monoid [4, 3.8].
Lemma 3.2. [5, 4.3] Let A1, A2, . . . , An, B1, B2, . . . , Bm ∈ R-Mod.

(1) [A1] + [A2] + . . .+ [An] = [B1] + [B2] + . . .+ [Bm] if and only if the
partitions (A1, A2, . . . , An) and (B1, B2, . . . , Bm) have isomorphic
refinements.
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(2) [A1] + [A2] + . . . + [An] ≤ [B1] + [B2] + . . . + [Bm] if and only
if (A1, A2, . . . , An) has a refinement which is a subpartition of a
refinement of (B1, B2, . . . , Bm).

For example, for A,B ∈ R-Mod, we have from this lemma that [A] ≤ [B]
if and only if A has a partition which is a subpartition of B.

If 0 → A → B → C → 0 is a short exact sequence in R-Mod, then
(A,C) is a partition of B, and so from 3.2(1), [B] = [A] + [C]. Thus the
map A 7→ [A] respects short exact sequences. Some other simple properties
are collected in the next lemma.

Lemma 3.3. Let R be a ring and A,B ∈ R-Mod.

(1) A = 0 ⇐⇒ [A] ≤ 0 ⇐⇒ [A] = 0
(2) A ∼= B =⇒ [A] = [B]
(3) [A⊕B] = [A] + [B]
(4) If A is isomorphic to a submodule, factor module or subfactor mod-

ule of B, then [A] ≤ [B]
(5) If A = (Ai)i∈I is a partition of A, then [A] =

∑
i∈I [Ai].

(6) If A is finitely generated, then [A] ∝ [R].

We can now specify how M(S) embeds in M(R-Mod) for a Serre sub-
category S:

Lemma 3.4. [3, 16.8][4, 3.9] Let R be a ring.

(1) Given an order ideal I of M(R-Mod), the class

S = {A ∈ R-Mod | [A] ∈ I }

is a Serre subcategory of R-Mod. Moreover I ∼= M(S).
(2) Given a Serre subcategory S of R-Mod, the class

I = { [A] ∈M(R-Mod) | A ∈ S }

is an order ideal of M(R-Mod). Moreover I ∼= M(S).

From this lemma we see that there is a bijection between Serre subcat-
egories of R-Mod and order ideals of M(R-Mod).

In view of this lemma we will make the convention that, for any Serre sub-
category S of R-Mod, M(S) is contained (as an order ideal) in M(R-Mod).
In particular, M(R-Noeth) ⊆ M(R-Mod). Then [A] is an element of
M(S) or M(R-Noeth) according to whether A is in S or R-Noeth respec-
tively.
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Now suppose we have a functor Γ: S-Mod → R-Mod where S is a
ring. If Γ is exact, it is easy to see that Γ induces a monoid homomor-
phism γ: M(S-Mod) → M(R-Mod) such that γ([A]) = [Γ(A)] for all
A ∈ S-Mod.

An easy example of such a functor is obtained from a ring homomor-
phism φ: R→ S. Let Γ: S-Mod→ R-Mod be the functor which sends an
S-module SA to RA, the same module with R action determined by φ, and
maps an S-module homomorphism to the same map, now thought of as an
R-module homomorphism. A short exact sequence in S-Mod becomes, via
this functor, a short exact sequence in R-Mod, and so Γ is exact. Thus
there is a monoid homomorphism γ: M(S-Mod)→M(R-Mod) such that
γ([SA]) = [RA] for all SA ∈ S-Mod.

One special case of this is the functor arising from the quotient map
R→ R/I where I is a two-sided ideal of R. This functor induces a monoid
homomorphism γI : M(R/I-Mod) → M(R-Mod) with important proper-
ties:
Lemma 3.5. [4, 3.9][5, 4.6] Let R be a ring, I ⊆ R a two-sided ideal and
γI : M(R/I-Mod)→M(R-Mod) as above.

(1) γI is injective. In particular, M(R/I-Mod) ∼= γI(M(R/I-Mod))
and M(R/I-Noeth) ∼= γI(M(R/I-Noeth)).

(2) γI(M(R/I-Mod)) is an order ideal of M(R-Mod).
(3) γI(M(R/I-Noeth)) is an order ideal of M(R-Noeth).
(4) If I is nilpotent, then γI is surjective, M(R/I-Mod) ∼= M(R-Mod)

and M(R/I-Noeth) ∼= M(R-Noeth).
The Serre subcategories of R-Mod which are obtained from the order

ideals γI(M(R/I-Mod)) and γI(M(R/I-Noeth)) using 3.4(1) are

{A ∈ R-Mod | ∃n ∈ N such that InA = 0 }

and

{A ∈ R-Noeth | ∃n ∈ N such that InA = 0 },

respectively. In view of this lemma, we will make the convention that, for
any two-sided ideal I of R, M(R/I-Mod) and M(R/I-Noeth) are order
ideals of M(R-Mod).

For the remainder of this section we specialize to commutative rings.
Our immediate goal is to show that if P is a prime ideal of a commutative
ring R, then [R/P ] is a free prime element of the monoid M(R-Mod).
Lemma 3.6. Let P be a prime ideal of a commutative ring R and A a
partition of R/P .
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(1) A has a refinement containing R/P .
(2) A contains at most one module isomorphic to R/P .

Proof. We note first that one of the nonzero modules in A, A0 say, must
be isomorphic to I/P for some ideal I containing P .

(1) If x ∈ I \ P , then (Rx+ P )/P ∼= R/P and so A0 has the partition
(R/P, I/(Rx+P )). Then A0 can be replaced by (R/P, I/(Rx+P ))
in A to yield a refinement of A containing R/P .

(2) All modules in A except A0 are isomorphic to subfactor modules of
R/I and hence their annihilators contain I. Consequently none of
these modules can be isomorphic to R/P . �

For n ∈ N, we will write Pn for the partition (R/P,R/P, . . . , R/P ) with
n copies of R/P .
Theorem 3.7. Let P be a prime ideal of a commutative ring R. Then
[R/P ] is a free prime element of M(R-Mod). Moreover, for A ∈ R-Mod
and Pn as above, we have

φ[R/P ]([A]) = sup{n ∈ Z+ | Pn is a subpartition of A }.

Proof. For A ∈ R-Mod, define

φ(A) = sup{n ∈ Z+ | Pn is a subpartition of A }.

Suppose we have a short exact sequence 0 → A → B → C → 0 in
R-Mod. If Pm is a subpartition of a partition A of A, and Pn is a subparti-
tion of a partition C of C, then by concatenating A and C to form a partition
of B, we see that Pm+n is a subpartition of B. Thus m + n ≤ φ(B) and,
taking the supremum over all such m and n, we get φ(A) + φ(C) ≤ φ(B).

Conversely, suppose Pk is a subpartition of a partition B of B. Let B′ be
a common refinement of (A,C) and B. Then B′ contains k (nonoverlapping)
partitions of R/P . Using 3.6(1) we can make further refinements to get a
partition B′′ which is a refinement of (A,C) and has Pk as a subpartition.
From this it follows that there are m,n ∈ Z+ such that k = m + n, Pm is
a subpartition of A, and Pn is a subpartition of C. Thus k ≤ φ(A) + φ(C)
and, taking the supremum over all such k, we get φ(B) ≤ φ(A) + φ(C).

Since φ respects short exact sequences, there is an induced monoid ho-
momorphism from M(R-Mod) to Z∞, which we will also call φ, such
that φ([A]) = φ(A) for all A ∈ R-Mod. Notice that from 3.6(2) we get
φ([R/P ]) = φ(R/P ) = 1.

Showing that [R/P ] is a free prime is now easy: If [R/P ] ≤ [A1] + [A2],
then, applying φ, we get 1 = φ(R/P ) ≤ φ(A1) + φ(A2). Thus for some
i ∈ {1, 2} we have 1 ≤ φ(Ai). From the definition of φ and 3.3(5) it follows
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that [R/P ] ≤ [Ai]. Thus [R/P ] is prime. Further, if m[R/P ] ≤ n[R/P ] for
some m,n ∈ N, then applying φ we get m ≤ n. Thus [R/P ] is free.

For A ∈ R-Mod, to prove that φ[R/P ]([A]) = φ(A), it suffices to show
that, for any n ∈ Z+, n[R/P ] ≤ [A] if and only if Pn is a subpartition of A.
But if n[R/P ] ≤ [A] then applying φ we get n ≤ φ(A) which implies Pn is a
subpartition of A. The converse implication is immediate from 3.3(5). �

We now specialize further to commutative Noetherian rings.
Lemma 3.8. Let R be a commutative Noetherian ring.

(1) M(R-Noeth) = {∝ [R]}
(2) If A ∈ R-Noeth is nonzero, there are prime ideals P1, P2, . . . , Pn

of R such that [A] = [R/P1] + [R/P2] + . . .+ [R/Pn].
(3) If U ∈ R-Noeth is nonzero such that [U ] is prime, then [U ] ≡

[R/P ] where P is a prime ideal of R.

Proof.
(1) Since R is Noetherian, we have [R] ∈ M(R-Noeth), and so the

order ideal generated by [R], namely {∝ [R]}, is contained in
M(R-Noeth). Conversely if A ∈ R-Noeth, then A is finitely
generated and so, from 3.3(6), [A] ∝ [R].

(2) The module A has a submodule series 0 = A0 ⊆ A1 ⊆ . . . ⊆ An = A
such that for i = 1, 2, . . . , n, Ai/Ai−1

∼= R/Pi for some prime ideal
Pi [16, Theorem 6.4]. Thus (R/P1, R/P2, . . . , R/Pn) is a partition
of A and the claim follows from 3.3(5).

(3) From 2, [U ] = [R/P1] + [R/P2] + . . .+ [R/Pn] for some prime ideals
P1, P2, . . . , Pn. Since [U ] is prime there must be some index i such
that [U ] ≡ [R/Pi]. �

Theorem 3.9. If R is a commutative Noetherian ring, then M(R-Noeth)
is primely generated, strongly separative and has the properties P1-P7 of
2.13.

Proof. The element 0 = [0] ∈ M(R-Noeth) is prime, and for any module
A ∈ R-Noeth which is nonzero, we have from 3.8(2) and 3.7 that [A] is
a sum of primes. Therefore M(R-Noeth) is primely generated by the set
{ [R/P ] | P ∈ SpecR } ∪ {0}.

We have from 3.7 that for any p in this set of generators, either p is free
or p = 0. Thus all the remaining claims follow from Theorem 2.13. �

In [4, 5.1] it is shown that for any ring R, M(R-Noeth) is strongly
separative. It is not known which, if any, of the other properties in 2.13
occur in this generality.
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4. The Radann map

The radann map takes R-modules to radical ideals of the ring R and
respects exact sequences. With it we will be able to link the prime elements
of the monoid M(R-Mod) with the prime ideals of the ring.
Definition 4.1. Let R be a commutative ring, SpecR the set of all prime
ideals of R, and RadR the set of all radical ideals of R, that is, all inter-
sections of sets of prime ideals. R is a radical ideal by this definition since
it is the intersection of the empty set of prime ideals.

For an ideal I ⊆ R we define the radical of I by

rad I =
⋂
{P ∈ SpecR | I ⊆ P } ∈ RadR.

An equivalent definition is rad I = { r ∈ R | ∃n ∈ N such that rn ∈ I }.
For a module A ∈ R-Mod we define

radannA = rad(annA)

where annA = { r ∈ R | rA = 0 } is the annihilator of A.
If I is an ideal of R, then we have immediately that I ⊆ rad I and

(I ∈ RadR ⇐⇒ rad I = I). Further if I1 ⊆ I2 are ideals of R, then
rad I1 ⊆ rad I2.
Lemma 4.2. Let I, I1, I2 be ideals of R, and A,B,C ∈ R-Mod.

(1) rad I = R ⇐⇒ I = R
(2) A = 0 ⇐⇒ [A] = 0 ⇐⇒ annA = R ⇐⇒ radannA = R
(3) rad I1 ∩ rad I2 = rad(I1 ∩ I2) = rad(I1I2)
(4) If 0→ A→ B → C → 0 is exact, then

(annA)(annC) ⊆ annB ⊆ annA ∩ annC
radannB = radannA ∩ radannC.

Proof.
(1) If I 6= R, then there is a maximal, and hence prime, ideal P such

that I ⊆ P 6= R. Thus rad I ⊆ P and rad I 6= R.
(2) From (1) and 3.3(1).
(3) [2, II.2.6 Cor. 2]
(4) The first claim is easy. Then the second claim follows from (3). �

The last claim of this lemma suggests that we should consider RadR to
be a monoid with the operation ∩ and identity R, so that radann respects
exact sequences as a map to (RadR,∩, R). From the universal property
of M(R-Mod), we have a monoid homomorphism, which we will also call
radann, from M(R-Mod) to RadR such that radann[A] = radannA for
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all A ∈ R-Mod. The homomorphism radann : M(R-Mod) → RadR is
surjective since for any S ∈ RadR we have

radann([R/S]) = radann(R/S) = radS = S.

It is easy to check that the preorder ≤ on the monoid RadR is reverse
inclusion:

S1 ≤ S2 ⇐⇒ S1 ⊇ S2

for all S1, S2 ∈ RadR.

Lemma 4.3. If I is an ideal of R and S ∈ RadR, then

[R/S] ≤ [R/I ] ⇐⇒ S ⊇ I.

In particular, if P1, P2 are prime ideals of R, then

[R/P1] ≤ [R/P2] ⇐⇒ P1 ⊇ P2.

Proof. Since radann is a homomorphism, from [R/S] ≤ [R/I ], we get

S = radann[R/S] ⊇ radann[R/I ] = rad I ⊇ I.

The converse is immediate since S ⊇ I implies that R/S is a quotient
module of R/I . �

The monoid (RadR,∩, R) has the property that for all S ∈ RadR,
S ∩ S = S, that is, every element is idempotent. Such monoids are called
0-semilattices:

A 0-semilattice [6, Section 3], [12, 1.3.2] is a partially ordered set (L,≤)
with a minimum element 0 such that a ∨ b exists for all a, b ∈ L. In this
circumstance (L,∨, 0) is a monoid in which the preorder ≤ defined as in
2.1 coincides with the given partial order on L. Conversely , if M is a
monoid such that 2a = a for all a ∈M , then (M,≤) is a 0-semilattice with
minimum element 0 in which + and ∨ coincide.

To prove that (RadR,∩, R) has refinement, it will be convenient to define
K(I) = {P ∈ SpecR | I ⊆ P } for any ideal I of a ring R. Then for ideals
I and J we have (I ⊆ J =⇒ K(I) ⊇ K(J)), K(I ∩ J) = K(I) ∪ K(J), and
(I ∈ RadR ⇐⇒ I =

⋂
K(I)).

Lemma 4.4. For any commutative ring R, (RadR,∩, R) is a refinement
monoid. Moreover, an ideal S ∈ RadR is prime element of the monoid if
and only if S = R or S is a prime ideal.

Proof. Suppose we have A1, A2, B1, B2 ∈ RadR with A1 ∩ A2 = B1 ∩ B2.
Set Cij =

⋂
(K(Ai)∩K(Bj)) ∈ RadR for i, j = 1, 2. Thus, by construction,
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K(Cij) = K(Ai)∩K(Bj). To prove that A1 = C11 ∩C12, it suffices to show
K(A1) = K(C11 ∩ C12):

K(C11 ∩ C12) = K(C11) ∪ K(C12)

= (K(A1) ∩ K(B1)) ∪ (K(A1) ∩ K(B2))

= K(A1) ∩ (K(B1) ∪ K(B2))

= K(A1) ∩ (K(B1 ∩B2)).

But B1 ∩B2 ⊆ A1, hence K(B1 ∩B2) ⊇ K(A1) and K(C11 ∩C12) = K(A1).
Similarly, A2 = C21 ∩ C22, B1 = C11 ∩ C21 and B2 = C12 ∩ C22 and so

RadR has refinement.
Suppose now S is a prime element of RadR and I1, I2 ⊆ R are ideals such

that I1I2 ⊆ S. Using 4.2(3), we get rad I1∩rad I2 = rad(I1I2) ⊆ radS = S,
or, as elements of the monoid, rad I1 ∩ rad I2 ≥ S. Since S is a prime
element of the monoid, either rad I1 ≥ S or rad I2 ≥ S. Hence, either
I1 ⊆ rad I1 ⊆ S or I2 ⊆ rad I2 ⊆ S. This makes S either a prime ideal of
R or R itself.

Conversely, suppose that S is a prime ideal and S1, S2 ∈ RadR such
that S1 ∩ S2 ≥ S, that is, S1 ∩ S2 ⊆ S. Then S1S2 ⊆ S so either S1 ⊆ S
or S2 ⊆ S, that is, either S1 ≥ S or S2 ≥ S. Thus S is a prime element of
RadR

Note also that R is the identity of the monoid, so it is a prime element
of RadR. �

It is interesting to notice that (RadR,≤) is not just a semilattice, but
also a lattice with

S1 ∨ S2 = S1 ∩ S2 S1 ∧ S2 = rad(S1 + S2)

for all S1, S2 ∈ RadR. The fact that (RadR,∩, R) has refinement implies
that (RadR,∨,∧) is a distributive lattice. See [6, 3.6] and [11, page 99] for
the details.

If R is Noetherian, then any S ∈ RadR is actually an intersection of a
finite number of prime ideals, and so RadR is a primely generated refine-
ment monoid. We notice further that in this case, if [U ] ∈M(R-Noeth) is
prime, then either [U ] = 0 and radann[U ] = R, or, by 3.8(3), [U ] ≡ [R/P ]
for some prime ideal P and radann[U ] = P . Thus radann maps prime
elements of M(R-Noeth) to prime elements of RadR.
Theorem 4.5. Let R be a commutative Noetherian ring. Then for all
A,B ∈ R-Noeth

(1) [A] � [R/ annA] � [R/ radannA]
(2) [A] ∝ [B] ⇐⇒ radannA ⊇ radannB
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(3) [A] � [B] ⇐⇒ radannA = radannB

Proof.

(1) If A = 0, then [A] = [R/ annA] = [R/ radannA] = 0 and the claim
is true. Otherwise, from 3.8(2), there are prime ideals P1, P2, . . . , Pn
of R such that [A] = [R/P1] + [R/P2] + . . . + [R/Pn]. For i =
1, 2, . . . , n, we have [R/Pi] ≤ [A], so

Pi = radann[R/Pi] ⊇ radann[A] = radannA

and hence [R/Pi] ≤ [R/ radannA]. Thus [A] ≤ n[R/ radannA]
and, in particular, [A] ∝ [R/ radannA].

Since annA ⊆ radannA, we have [R/ radannA] ≤ [R/ annA]
and hence also [R/ radannA] ∝ [R/ annA].

Let {a1, a2, . . . , an} be a set of generators for A, and φ: R→ An

the homomorphism defined by φ(r) = (ra1, ra2, . . . , ran). Then
kerφ = annA, and so R/ annA is isomorphic to a submodule of
An and [R/ annA] ≤ n[A]. This implies [R/ annA] ∝ [A].

(2) If radannA ⊇ radannB, then [R/ radannA] ≤ [R/ radannB] and
hence, using (1), [A] ∝ [B].

The converse is easy since radann is a homomorphism and RadR
a semilattice.

(3) Follows directly from (2). �

Since the radann map is surjective, item 3 of this theorem implies that,
for a commutative Noetherian ring R,

RadR ∼= M(R-Noeth)/� .

It is easy to show that for any monoid M , the quotient monoid M/� has
the following universal property with respect to 0-semilattices: If φ: M → L
is a monoid homomorphism with L a 0-semilattice, then φ factors uniquely
through the quotient map from M to M/�. If RadR ∼= M(R-Noeth)/�,
then the monoid RadR has this same universal property:

Corollary 4.6. If R is a commutative Noetherian ring, L a 0-semilattice,
and Φ: R-Noeth → L a map which respects short exact sequences, then
there is a unique monoid homomorphism φ: RadR → L such that, for all
A ∈ R-Noeth, Φ(A) = φ(radannA).

To be explicit, the map Φ: R-Noeth→ L respects short exact sequences
if Φ(0) = 0 ∈ L, and Φ(B) = Φ(A)∨Φ(C) whenever 0→ A→ B → C → 0
is an exact sequence in R-Noeth.
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5. The structure of {� [A]}

In the previous section we found that, when R is a commutative Noe-
therian ring , then M(R-Noeth) modulo the congruence � is isomorphic
to RadR. The obvious next question is: What is the structure of a typical
congruence class {� a} where a = [A] for some nonzero A ∈ R-Noeth?

Since M(R-Noeth) is separative, we know from 2.3(S3) that {� a}
is cancellative. Since M(R-Noeth) is strongly separative, we have from
2.5(2) that a is free, and so 2.12 applies and we have the more precise
information that {� a} ∼= N

n ×Ga where n ∈ N is the number of elements
in an incomparable set of prime elements {p1, p2, . . . , pn} ⊆M(R-Noeth)
such that

a ≡ φp1(a)p1 + φp2(a)p2 + . . .+ φpn(a)pn.

We will show in this section that n has a more familiar module theoretic
meaning, namely, it is the number of prime ideals minimal among the asso-
ciated primes of A, or equivalently, n is the number of prime ideals minimal
in the support of A.

Given a module A ∈ R-Noeth, a prime ideal P such that P = ann a
for some a ∈ A is called an associated prime of A. The set of associ-
ated primes of A is written AssA. The set of prime ideals P such that
the localization AP is nonzero, is called the support of A and is written
SuppA.

Lemma 5.1. Let R be a commutative Noetherian ring, P a prime ideal
and A ∈ R-Noeth. Then the following are equivalent:

(1) P ∈ SuppA
(2) annA ⊆ P
(3) A has a subfactor isomorphic to R/P
(4) 1 ≤ φ[R/P ]([A])
(5) [R/P ] ≤ [A]
(6) [R/P ] ∝ [A]

Proof. The equivalence of (1) and (2) is proved in [16, page 26]. The
equivalence of (3), (4) and (5) comes directly from 3.7. Since [R/P ] is
prime, (5) and (6) are easily seen to be equivalent. If A has a subfactor
isomorphic to R/P , then annA ⊆ annR/P = P , thus (3) implies (2). To
complete the proof we show that (2) implies (6):

Since P is a prime ideal, annA ⊆ P implies that radannA ⊆ P . We also
have P = radannR/P and so, from 4.5(2), [R/P ] ∝ [A]. �
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In the next theorem we will assume that SpecR is ordered by inclu-
sion, rather than reverse inclusion which would be appropriate if one was
considering SpecR as a subset of the monoid RadR.
Theorem 5.2. Let R be a commutative Noetherian ring. Then for any
nonzero module A ∈ R-Noeth the following sets coincide:

(1) The set of minimal elements of AssA
(2) The set of minimal elements of SuppA
(3) The set of minimal elements of {P1, P2, . . . , Pm} ⊆ SpecR when-

ever [A] = [R/P1] + [R/P2] + . . .+ [R/Pm].
(4) The unique incomparable set {P1, P2, . . . , Pn} ⊆ SpecR such that

[A] ≡ n1[R/P1]+n2[R/P2]+. . .+nn[R/Pn] with n1, n2, . . . , nn ∈ N.
(5) The unique incomparable set {P1, P2, . . . , Pk} ⊆ SpecR such that

radannA = ∩iPi.

Proof. In [16, 6.5(iii)] it is proved that the first two sets are equal.
Suppose there exist finite subsets X,Y, Z ⊆ SpecR such that
• [A] =

∑
P∈X [R/P ]

• [A] ≡
∑
P∈Y nP [R/P ] with nP ∈ N for all P ∈ Y

• radannA = ∩P∈ZP .
We will show that every element of SuppA contains an element of X, every
element of X contains an element of Y , every element of Y contains an
element of Z, and every element of Z contains an element of SuppA. This
has as a consequence that SuppA, X, Y and Z have the same set of minimal
elements, and shows uniqueness in case one of these sets is incomparable.

Suppose P0 ∈ SuppA. Then, from 5.1, we have [R/P0] ≤ [A], and, since
[A] =

∑
P∈X [R/P ] and [R/P0] is prime, there is some P1 ∈ X such that

[R/P0] ≤ [R/P1]. From 4.3, this implies P1 ⊆ P0.
Suppose P1 ∈ X. Then [R/P1] ≤ [A] with [A] ≡

∑
P∈Y nP [R/P ], so

just as in the previous paragraph, there is some P2 ∈ Y such that P2 ⊆ P1.
Suppose P2 ∈ Y . Then [R/P2] ≤ [A] and so∏

P∈Z
P ⊆

⋂
P∈Z

P = radannA ⊆ radannR/P2 = P2.

Since P2 is prime, there is some P3 ∈ Z such that P3 ⊆ P2.
Suppose P3 ∈ Z. Then we have radannA ⊆ P3 = radannR/P3, and,

from 4.5(2), [R/P3] ∝ [A]. Since [R/P3] is prime, this implies [R/P3] ≤ [A]
and so, from 5.1, P3 ∈ SuppA.

Now we consider the question of whether the sets described in (4) and
(5) exist. From 3.8(2), there are prime ideals P1, P2, . . . , Pn of R such that
[A] = [R/P1] + [R/P2] + . . . + [R/Pn]. Collecting equal terms together we
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can certainly write [A] ≡ n1[R/P1] +n2[R/P2] + . . .+nn[R/Pn] where now
P1, P2, . . . , Pn are distinct primes and n1, n2, . . . , nn ∈ N. We will show
that we can drop any terms in this sum which correspond to primes which
are not minimal in the set {P1, P2, . . . , Pn}.

If we had, for example, P1 ⊆ P2 (and P1 6= P2), then [R/P2] ≤ [R/P1]
and so [R/P2] + [B] = [R/P1] for some B ∈ R-Noeth. Since [R/P1] is
prime, but, by 4.3, [R/P1] 6≤ [R/P2], we must have [R/P1] ≤ [B]. It follows
easily that [R/P1] + [R/P2] ≡ [R/P1], so n1[R/P1] + n2[R/P2] ≡ n1[R/P1]
and we can drop the term n2[R/P2] from the expression for A.

Removing all such terms, and relabeling we have an incomparable set of
primes P1, P2, . . . , Pn such that [A] ≡ n1[R/P1]+n2[R/P2]+. . .+nn[R/Pn]
for some n1, n2, . . . nn ∈ N. Applying radann to this equation one gets
radannA = radann[A] = ∩i radann(ni[R/Pi]) = ∩iPi. �

It follows easily from 4.3 that a set of prime ideals {P1, P2, . . . , Pn} is
incomparable if and only if the set {[R/P1], [R/P1], . . . , [R/Pn]} is incom-
parable. Comparison of (4) of this theorem with Lemma 2.12 yields the
following:
Corollary 5.3. Let A be a nonzero Noetherian module over a commutative
Noetherian ring R. Then

[A] ≡ φ[R/P1]([A])[R/P1] + φ[R/P2]([A])[R/P2] + . . .+ φ[R/Pn]([A])[R/Pn]

where {P1, P2, . . . , Pn} is the incomparable set of prime ideals provided by
the theorem. Moreover, {� [A]} ∼= N

n ×G[A] (as semigroups).
Theorem 5.4. Let A and B be Noetherian modules over a commuta-
tive Noetherian ring R. Then [A] = [B] if and only if the following three
conditions hold:

(1) radannA = radannB. Equivalently, the incomparable set of prime
ideals {P1, P2, . . . , Pn} obtained from A using 5.2, coincides with
the incomparable set of prime ideals obtained from B. This condi-
tion implies that [A] � [B] and G[A] = G[B].

(2) φ[R/Pi]([A]) = φ[R/Pi]([B]) for i = 1, 2, . . . , n. Conditions (1) and
(2) imply [A] ≡ [B].

(3) A and B represent the same element in G[A] = G[B]. More pre-
cisely, given an arbitrary element u ≡ [A] ≡ [B], we have Gu =
G[A] = G[B], and via 2.7(3) we can think of [A] and [B] as el-
ements of the group ({≡ u},2u, u) ∼= Gu. We require then that
[A] = [B] in this group.

Proof. Of course since radann and φ[R/Pi] are homomorphisms the necessity
of these conditions is clear.
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From 5.2(5) we have the equivalence of the conditions in (1). The re-
maining claims in (1) are from 4.5(3), 3.9 and 2.7(2).

If A and B satisfy conditions (1) and (2), then, from 5.3 we have [A] ≡
[B].

We now can think of [A] and [B] as elements of the group ({≡ u},2u, u),
so the last requirement, that [A] = [B] in this group, means [A] = [B] in
M(R-Noeth). �

6. The structure of G[A]

For a commutative Noetherian ring R, Theorem 5.4 reduces the problem
of understanding the structure of M(R-Noeth) to the understanding of the
Abelian groups G[A] for A ∈ R-Noeth. Unfortunately, there is not much
that can be said about these groups in general — on the positive side, this
means that these groups contain potentially important information about
modules. If R is a Dedekind domain we will show that G[R] is isomorphic to
the ideal class group of the ring. This suggests that, in general, calculating
G[A] will be at least as difficult as calculating the ideal class groups of a
Dedekind domain.

In our discussion we will often take advantage of the alternative descrip-
tion of G[A] as the set {≡ [A]} with operation 2[A] and identity [A] as
described in 2.7(3).

For example, let I be an ideal. Then from 3.5, M(R/I-Noeth) embeds
as an order ideal in M(R-Noeth). Considering R/I as a ring, R-module
or R/I-module as appropriate, it is easy to check that the sets {≡ [R/I ]}
and operation 2[R/I] have the same meaning in both M(R-Noeth) and
M(R/I-Noeth). Thus G[R/I] defined relative to M(R-Noeth) is isomor-
phic to G[R/I] defined relative to M(R/I-Noeth).

From 2.6 there is an Abelian group G[A] for every module A ∈ R-Noeth.
There are not quite so many groups as one might think from this statement:
From 4.5 we have that [A] � [R/S] where S = radannA, and hence, from
2.7(2), G[A] = G[R/S]. Thus we have at most one group for each radical
ideal of R.

Further, if A 6= 0, then from 3.8(2), [A] = [R/P1]+ [R/P2]+ . . .+[R/Pn]
for some prime ideals P1, P2, . . . , Pn. Since 2.14 applies to M(R-Noeth),
we have that G[A] is a homomorphic image of the direct sum of the groups
G[R/Pi] for i = 1, 2, . . . , n. Thus we will focus on groups of the form G[R/P ]

where P is a prime ideal of R.
Suppose first that P is a maximal ideal, so that R/P is a simple module.

Then it is trivial that [B] ≡ [R/P ] ⇐⇒ [B] = [R/P ] ⇐⇒ B ∼= R/P for
any module B, and so {≡ [R/P ]} = {[R/P ]} and G[R/P ] is trivial.
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If A ∈ R-Noeth is a finite length module, then there are simple modules
A1, A2, . . . , An such that [A] = [A1] + [A2] + . . . + [An]. From 2.14, the
group G[A] is a homomorphic image of the direct sum of the groups G[Ai]

for i = 1, 2, . . . , n. Since each of these groups is trivial, so is G[A].
That G[A] is trivial when A has finite length is true, in fact, over any

ring. This can be seen as an easy consequence of the structure of M(R-Len)
discussed in [5, 4.8]. Here R-Len is the Serre subcategory of finite length
R-modules.

The next step would be to discuss G[R/P ] when R/P has dimension 1.
From the above discussion G[R/P ] defined relative to M(R-Noeth) is iso-
morphic to G[R/P ] defined relative to M(R/P -Noeth), so without loss of
generality, we can assume that R is a 1-dimensional Noetherian domain
and we are interested in G[R].

We notice first that G[R] is the only (potentially) non-trivial group built
into M(R-Noeth). Indeed, if A ∈ R-Noeth and 1 ≤ φ[R]([A]), then from
5.1 and 3.8(1) we get [A] � [R], and then by 3.9 and 2.7(2), G[A] = G[R].
On the other hand, if 0 = φ[R]([A]), then by 5.1, annA 6= 0, which implies
A has finite length and so G[A] is trivial.

For dimension 1 rings we can quote the following result which provides
generators and relations for G[R]:

Theorem 6.1. [5, 1.1,6.6(6)] Let R be a commutative Noetherian domain
with dimension 1, and S a set of representatives of the isomorphism classes
of simple R-modules. Then G[R] is isomorphic to the Abelian group with one
generator 〈S〉 for each S ∈ S, and relations 〈S1〉+ 〈S2〉+ . . .+ 〈Sk〉 = 0
whenever S1, S2, . . . , Sk ∈ S are isomorphic to the composition series fac-
tors of R/(x) for some irreducible x ∈ R.

Remark: From [5], we could have simply required that x 6= 0 in this
theorem — choosing x to be irreducible just removes redundant relations.

The main goal of this section is to prove that, in the special case that
R is a Dedekind domain, G[R] is isomorphic to the class group of R. We
will prove this claim using Lemma 6.2 which is of independent interest but
requires some preliminary definitions:

Suppose for the moment that R is an arbitrary left Noetherian ring. The
class of finitely generated projective R-modules, R-Proj, is often studied
using the group K0(R). This group is, by definition, the Abelian group
generated by the elements of R-Proj subject to the relations

〈P 〉 = 〈P1〉+ 〈P2〉

whenever P ∼= P1 ⊕ P2 for P, P1, P2 ∈ R-Proj. Here we use additive
notation and write 〈P 〉 for the image of P ∈ R-Proj in K0(R).
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Modules P,Q ∈ R-Proj are stably isomorphic if there is some module
U ∈ R-Proj such that P ⊕ U ∼= Q ⊕ U , or, equivalently, if there is n ∈ N
such that P ⊕ Rn ∼= Q ⊕ Rn. For P,Q ∈ R-Proj, 〈P 〉 = 〈Q〉 in K0(R) if
and only if P and Q are stably isomorphic ([17, Chapter 12], [18]).

A ring R is left regular if every finitely generated left R-module has a
finite projective resolution. For a left Noetherian ring this means that for
every A ∈ R-Noeth, there is an exact sequence

0→ Pn → Pn−1 → . . .→ P2 → P1 → A→ 0

with P1, P2 . . . , Pn ∈ R-Proj. For example, rings of finite global dimension
and hereditary rings are left regular rings.
Lemma 6.2. Suppose R is a left Noetherian left regular ring. For all
P,Q ∈ R-Proj we have

〈P 〉 = 〈Q〉 ⇐⇒ [P ] = [Q],

that is, P and Q are stably isomorphic if and only if they have isomorphic
submodule series.

Proof. We define a map Λ: R-Noeth → K0(R) as follows. Given a mod-
ule A ∈ R-Noeth with a finite projective resolution as described above,
define Λ(A) = 〈P1〉 − 〈P2〉 + . . . ± 〈Pn〉. Using Schanuel’s Lemma ([20,
3.62, Ex. 3.37]) it is easy to show that Λ is well defined. A simple
induction from the Horseshoe Lemma ([20, 6.20]) shows that Λ respects
short exact sequences. Thus there is an induced monoid homomorphism
λ: M(R-Noeth)→ K0(R) such that λ([A]) = Λ(A) for all A ∈ R-Noeth.
In particular, for any P ∈ R-Proj we have λ([P ]) = Λ(P ) = 〈P 〉. Thus if
P,Q ∈ R-Proj are such that [P ] = [Q], then 〈P 〉 = λ([P ]) = λ([Q]) = 〈Q〉.

Conversely, if 〈P 〉 = 〈Q〉, then P ⊕ U ∼= Q ⊕ U for some U ∈ R-Proj.
From 1.1 we get [P ] = [Q]. �

Now let R be a Dedekind domain. Then R is Noetherian [19, 1.4.5] and
has the following properties:

P1 [19, 1.4.5] Every fractional ideal of R is in R-Proj. This implies
that R is hereditary, has global dimension 1, and hence satisfies the
hypothesis of Lemma 6.2.

P2 [19, 1.4.11] If I, J are nonzero fractional ideals then I⊕J ∼= R⊕IJ .
P3 [19, 1.4.12] Any module P ∈ R-Proj is isomorphic to Rn ⊕ I for

some n ∈ Z+ and fractional ideal I. The isomorphism class of I is
uniquely determined by P .

P4 For P,Q ∈ R-Proj, P ∼= Q ⇐⇒ 〈P 〉 = 〈Q〉. This follows easily
from the previous property.
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The class group of R, C(R), is the set of isomorphism classes of nonzero
fractional ideals of R with operation + defined by 〈〈I〉〉 + 〈〈J〉〉 = 〈〈IJ〉〉.
Here we write 〈〈I〉〉 for the isomorphism class of the fractional ideal I. The
identity element of C(R) is 〈〈R〉〉.
Theorem 6.3. If R is a Dedekind domain, then G[R]

∼= C(R).

Proof. For this proof we will consider G[R] to be the set {≡ [R]} with
operation 2[R] and identity [R] as described in 2.7(3).

Any nonzero fractional ideal I of R is isomorphic to a nonzero (inte-
gral) ideal of R, so [I] ≤ [R]. Further, for any nonzero element x of I,
we have R ∼= Rx ⊆ I, and so [I] ≥ [R]. Thus [I] ≡ [R], and since
elements of C(R) are isomorphism classes, there is a well defined map
ν: C(R) → G[R] such that ν(〈〈I〉〉) = [I] for all nonzero fractional ideals I.
That ν: C(R) → G[R] is a group homomorphism follows immediately from
the fact that M(R-Noeth) is strongly separative, 2.7(4) and P2.

From P1, P4 and 6.2 we have, for nonzero fractional ideals I, J ,

[I] = [J ] ⇐⇒ 〈I〉 = 〈J〉 ⇐⇒ I ∼= J ⇐⇒ 〈〈I〉〉 = 〈〈J〉〉.
Thus the map ν is injective.

To prove that ν is surjective we need to show that for every [A] ≡ [R]
there is a fractional ideal I such that [A] = [I].

Suppose then that [A] ≡ [R] for some A ∈ R-Noeth. Then there is an
epimorphism from Rn to A for some n ∈ N. The kernel of this epimorphism
is a submodule of Rn so is projective. Without loss of generality we can
assume that the kernel is nonzero, hence, using P3, we get the short exact
sequence

0→ J ⊕Rm → Rn → A→ 0

for some nonzero fractional ideal J and m ∈ Z+. In M(R-Noeth) we have
n[R] = m[R] + [J ] + [A].

The inverse of 〈〈J〉〉 in C(R) is represented by a nonzero fractional ideal
I such that I ⊕ J ∼= R ⊕R. In M(R-Noeth) this implies [I] + [J ] = 2[R].
Adding [I] to n[R] = m[R] + [J ] + [A] yields n[R] + [I] = (m+ 2)[R] + [A].
Now we apply the monoid homomorphism φ[R] to this equation noting that,
since [A] ≡ [I] ≡ [R], we have φ[R]([A]) = φ[R]([I]) = φ[R]([R]) = 1. Thus
n+1 = m+2+1 and so n[R]+[I] = n[R]+[A]. Finally we have n[R] ∝ [A],
so, using the strong separativity of M(R-Noeth) in the form of 2.3(T3),
we can cancel n[R] from this equation to get [A] = [I]. �

L. Claborn [7] showed that any Abelian group is the class group of a
Dedekind domain, thus we now know that any Abelian group is G[R] for
some 1-dimensional Noetherian domain R.
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