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Abstract

Let A be any set of positive integers and n ∈ N. A composition of n with parts in A is an ordered
collection of one or more elements in A whose sum is n. A palindromic composition of n with parts in
A is a composition of n with parts in A in which the summands are the same in the given or in reverse
order. A Carlitz (palindromic) composition of n with parts in A is a (palindromic) composition of
n with parts in A in which no adjacent parts are the same. In this paper, we study the generating
functions for several counting problems for compositions, palindromic compositions, Carlitz compo-
sitions, and Carlitz palindromic compositions with parts in A, respectively. Our theorems contain
many previously known results as special cases, as well as many new results. We also prove some of
our results using direct counting arguments.
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1. Introduction

Let N be the set of all positive integers. A composition of n ∈ N is an ordered collection of one or
more positive integers whose sum is n. The number of summands is called the number of parts of
the composition. For A = {a1, a2, . . .} ⊆ N, we denote the number of compositions of n with parts in
A (respectively with j parts in A) by CA(n) (respectively CA(j;n)). The corresponding generating
functions are given by

CA(x) =
∑

n≥0

CA(n)xn and CA(j;x) =
∑

n≥0

CA(j; n)xn,

where we define CA(0) = CA(0; 0) = 1, CA(j; 0) = 0 for j ≥ 1, and CA(j;n) = 0 for n < 0.

A palindromic composition of n is a composition of n in which the summands are the same in the
given or in reverse order. We denote the number of palindromic compositions of n with parts in
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A (respectively with j parts in A) by PA(n) (respectively PA(j; n)). The corresponding generating
functions are given by

PA(x) =
∑

n≥0

PA(n)xn and PA(j; x) =
∑

n≥0

PA(j; n)xn,

where we define PA(0) = PA(0; 0) = 1,PA(j; 0) = 0 for j ≥ 1, and PA(j; n) = 0 for n < 0.

In addition, we define F̂n = Fn for n ≥ 1 and F̂0 = 1, where Fn is the nth Fibonacci number. Then,
using the generating function for the Fibonacci sequence, we can compute the generating function for
F̂n as

gF̂ (x) =
∑

n≥0

F̂nxn =
1− x2

1− x− x2
.(1.1)

2. The number of compositions with parts in a given set

In the following theorem we will present the generating function for the number of compositions of n
with j parts in A.

Theorem 2.1. Let A ⊆ N and j ≥ 0. Then the generating function for the number of compositions
of n with j parts in A is given by

CA(j; x) =

(∑

a∈A

xa

)j

.

Proof. To derive the generating function we create the compositions of n with j parts in A recursively
by the following process: to any composition of n− a with j− 1 parts in A, add an a ∈ A at the right
end. Thus, for n ≥ 1,

CA(j;n) =
∑

a∈A

CA(j − 1;n− a).

Multiplying by xn and summing over n ≥ 1, then changing the order of summation and simplifying
results in

CA(j;x) = CA(j − 1; x)
∑

a∈A

xa.

Iterating this equation and using the fact that CA(0; x) = 1 we get the desired result. ¤
Example 2.2. Theorem 2.1 gives an easy way to derive the generating function for the number of
compositions of n without k’s that have j parts. Chinn and Heubach gave recursions for this quantity
in [2, Theorem 5], but did not derive the generating function. Using A = Nk = N\{k} yields

CNk
(j;x) =

(
x

1− x
− xk

)j

= xj

(
1

1− x
− xk−1

)j

.

Example 2.3. Theorem 2.1 gives C{1,3,5,...}(j;x) =
(

x
1−x2

)j

and C{2,4,6,...}(j; x) =
(

x2

1−x2

)j

. Since
1

(1−x)k+1 =
∑

n≥0

(
n+k

n

)
xn (see for example [10], Eq. (2.5.7), p. 53), we get that xk

(1−x)k+1 =∑
n≥0

(
n
k

)
xn after appropriate re-indexing. Since

xj

(1− x2)j
=

x−j+2 · (x2)j−1

(1− x2)j
= x2−j

∑

n≥0

(
n

j − 1

)
x2n =

∑

n≥0

(
n

j − 1

)
x2n+2−j ,
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the number of compositions of 2n− j with j parts in {1, 3, 5, . . .} is given by
(
n−1
j−1

)
. Likewise,

x2j

(1− x2)j
=

x2 · x2j−2

(1− x2)j
=

∑

n≥0

(
n

j − 1

)
x2n+2,

and therefore, the number of compositions of 2n with j parts in {2, 4, 6, . . .} is also given by
(
n−1
j−1

)
.

The fact that these two counts are identical can be easily seen using a direct combinatorial argument:
In any composition of 2n − j with j parts in {1, 3, 5, . . . }, increase each part by 1. This yields a
composition of n with j parts in {2, 4, 6, . . . }.

Using Theorem 2.1 we get an alternative derivation of Theorem 1.1 in [6].

Theorem 2.4. Let A be any set of natural numbers. Then the generating function for the number of
compositions of n with parts in A is given by

CA(x) =
1

1−∑
a∈A xa

.

Proof. Since CA(n) =
∑

j≥0 CA(j; n) we get that CA(x) =
∑

j≥0 CA(j;x). Using Theorem 2.1 we get
the desired result. ¤

Example 2.5. (see [2, Theorem 1]) Let Nk = N\{k} be the set of all natural numbers without k.
Then Theorem 2.4 yields

CNk
(x) =

1
1− x

1−x + xk
=

1− x

1− 2x + xk − xk+1
.

Example 2.6. (see [3, Lemma 1, Part 1]) Let A = {1, k}. Then Theorem 2.4 yields

CA(x) =
1

1− x− xk
.

Example 2.7. Applying Theorem 2.4 to the set A = {1, 2, ..., `}, we obtain that

CA(x) =
1

1− x− x2 − · · · − x`
=

1
x`−1

· x`−1

1− x− x2 − · · · − x`
.

Thus, the number of compositions of n with parts that are less than or equal to ` is given by the
shifted `-generalized Fibonacci number. Specifically, C{1,2,...,`}(n) = F (`; n + ` − 1) for n ≥ 0, where
F (`; n) =

∑`
i=1 F (`; n − i) with F (`; 0) = · · · = F (`; ` − 2) = 0, F (`; ` − 1) = 1 [4]. Combinatorially,

this can be seen using the following recursive method to create these compositions: To create the
compositions of n, add i to the right end of the compositions of n − i, for i = 1, 2, . . . , `. The `-
generalized Fibonacci sequences occur in [9] as sequence A000073 for ` = 3 , A000078 for ` = 4 ,
A001591 for ` = 5 , and A001592 for ` = 6.

Example 2.8. Applying Theorem 2.4 to the set of prime numbers A = {2, 3, 5, 7, 11, 13, ...},we get that
the sequence {CA(n)}n≥0 is given by {1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105, 152, 232, 332, 501,
732, 1081, 1604, 2352, 3493, 5136, 7595, 11212, 16534, 24442, ...}, which occurs in [9] as sequence A023360.

Example 2.9. If A consists of the set of odd numbers, then Theorem 2.4 gives

C{1,3,5,...}(x) =
1

1− x
1−x2

=
1− x2

1− x− x2
= gF̂ (x).
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Thus, the number of compositions of n with parts in {1, 3, 5, . . .} is given by Fn for n ≥ 1, as was also
shown by [5] using a recursive equation. More generally, let Nd,e be the set of all numbers of the form
k · d + e where k ≥ 0, d, e ∈ N. Then Theorem 2.4 yields

CNd,e
(x) =

1
1− xe

1−xd

=
1− xd

1− xe − xd
.

If d = 2e, then the set A consists of all odd multiples of e, and

CN2e,e
(x) = C{e,3e,5e,...}(x) =

1− x2e

1− xe − x2e
= gF̂ (xe).

Thus, the number of compositions of n = k · e with parts in {e, 3e, 5e, . . .} is given by Fk for k ≥ 1.
This result can be explained combinatorially as follows: Multiply each part of a composition of n with
parts in {1, 3, 5, . . .} by e to create a composition of n · e with parts in {e, 3e, 5e, . . .}.

The above theorems can be generalized as follows. Let A = {a1, a2, . . .}, and let DA(n, r1, r2, . . .)
(respectively DA(j; n, r1, r2, . . .)) be the number of compositions of n (respectively with j parts) such
that the part ai ∈ A occurs exactly ri times in the composition (with

∑
i ri = j) and DA(0; 0, 0, 0 . . .) =

1 and DA(0; n, 0, 0, . . .) = 0 for n > 0. We define

DA(j; x, ta1 , ta2 , . . .) =
∑

n≥0

∑

r1+r2+...=j

DA(j; n, r1, r2, . . .)xn
∏

i≥0

tri
ai

,

and

DA(x, ta1 , ta2 , . . .) =
∑

n≥0

∑

r1+r2+...≥0

DA(n, r1, r2, . . .)xn
∏

i≥0

tri
ai

,

where x and tai are indeterminate variables. Theorem 2.10 gives formulas for these generating func-
tions.

Theorem 2.10. For any j ≥ 0,

DA(j;x, ta1 , ta2 , . . .) =

(∑

a∈A

taxa

)j

.

Moreover,

DA(x, ta1 , ta2 , . . .) =
1

1−∑
a∈A taxa

.

Note that if ta = 1 for all a ∈ A, then Theorem 2.10 gives Theorems 2.1 and 2.4.

Proof. The argument used in Theorem 2.1 needs to be refined. We create the compositions of n with
j parts in which the part ak ∈ A occurs exactly rk times by adding an ai ∈ A to a composition of
n− ai with j − 1 parts, in which the part ak occurs r̃k times where r̃k = rk for k 6= i and r̃i = ri − 1.
Thus, r1 + r2 + · · · = j and r̃1 + r̃2 + · · · = j − 1 and

DA(j; n, r1, r2, . . .) =
∑

ai∈A

DA(j − 1;n− ai, r̃1, r̃2, . . .).
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Multiplying this equation by xn
∏

i≥0 tri
ai

and summing over n ≥ 0 and r1 + r2 + . . . = j yields

DA(j; x, ta1 , ta2 , . . .) =
∑

ai∈A

xaitai

∑

n≥0

∑

r̃1+r̃2+...=j−1

DA(j − 1;n− ai, r̃1, r̃2, . . .)xn−ai

∏

k≥0

tr̃k
ak

=
∑

ai∈A

xaitaiDA(j − 1;x, ta1 , ta2 , . . .).

Iterating this equation and using the fact that DA(0; x, 0, 0, . . .) = 1 we get the desired result for
DA(x, ta1 , ta2 , . . .). The second result follows as in the proof of Theorem 2.4. ¤

Example 2.11. (see [2, Theorems 2-3]) Chinn and Heubach counted the number of times the part
i occurs in all compositions of n without occurrence of k. One way to count this quantity is to first
count the number of compositions of n without occurrence of k which have exactly m occurrences of i.
Using Theorem 2.10 with ti = t, tk = 0, and tl = 1 for all l 6= i, k, we get

DNk
(x, t1, t2, . . .) =

1
1− x

1−x + xi + xk − txi
=

1(
1−2x
1−x + xi + xk

)
− txi

=
∑

m≥0

(txi)m

(
1−2x
1−x + xi + xk

)m+1 .

Therefore, the generating function for the number of compositions of n without occurrence of k and
m occurrences of i is given by

xmi

(
1−2x
1−x + xi + xk

)m+1 .

Note that the denominator of this generating function is symmetric in i and k; thus, if we interchange
the roles of i and k and compare coefficients in the respective generating functions, we get that the
number of compositions of n without occurrence of k and with m occurrences of i is the same as the
number of compositions of n + m(k − i) without occurrence of i and with m occurrences of k, as long
as n + m(k − i) ≥ 0. Combinatorially, we can show the equivalence of these counts by adding k − i
to each part i in a composition of n without k. This creates m occurrences of k and takes out any
occurrence of i in the new composition of n + m(k − i).

Theorem 2.10 also allows us to count the number of compositions CB
A (n,m) of n with parts in A such

that m parts are in B ⊆ A. We denote the generating function for these compositions by CB
A (x, y),

where CB
A (x, y) =

∑
n≥0

∑
m≥0 CB

A (n, m)xnym. Setting ta = 1 for all a ∈ A\B and ta = y for all
a ∈ B in Theorem 2.10 yields the following result.

Corollary 2.12. Let A,B be two sets such that B ⊆ A ⊆ N. Then

CB
A (x, y) =

1
1−∑

a∈A\B xa − y
∑

a∈B xa
=

∑
m

(y
∑

a∈B xa)m

(
1−∑

a∈A\B xa
)m+1 .

Therefore, the generating function for the number of compositions of n with parts in A such that m
parts are in B is given by (∑

a∈B xa
)m

(
1−∑

a∈A\B xa
)m+1 .
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Example 2.13. Let A = N and B = {2n|n ∈ N}, then the second part of Corollary 2.12 gives the
generating function for the number of compositions of n with m even parts is given by

x2m(1− x2)
(1− x− x2)m+1

=
(

x2

1− x− x2

)m

· 1− x2

1− x− x2
=


∑

n≥1

Fn−1x
n




m

·
∑

n≥0

F̂nxn,

i.e., a convolution of m shifted Fibonacci sequences with the sequence F̂ defined in Section 1. If we
let m = 0, then all the parts are odd, and we get once more that the number of such compositions is
given by F̂n = Fn for n ≥ 1 (see Example 2.9). For larger values of m, an explicit formula in terms of
Fibonacci sequences can be obtained by using [8] and the references therein. For example, the number
of compositions of n with exactly one even part is given by 1

5 ((n + 3)Fn−1 + 2(n − 1)Fn−2) for all
n ≥ 0.

Example 2.14. Let A = {1, 2, k} and B = {k} for k ≥ 3, then applying the above corollary we get
that the number of compositions of n with parts in A and exactly m occurrences of k is

xkm

(1− x− x2)m+1
=

(
xk

1− x− x2

)m

· 1
(1− x− x2)

=


 ∑

n≥k−1

Fn−k+1x
n




m

·
∑

n≥0

Fn+1x
n,

i.e., once more we get a convolution of shifted Fibonacci sequences.

3. The number of palindromic compositions with parts in a given set

In the following theorem we will present the generating function for the number of palindromic com-
positions of n with j parts in A.

Theorem 3.1. Let A ⊆ N and j ≥ 0. Then the generating function for the number of palindromic
compositions of n with j parts in A is given by

PA(j; x) =

{ (∑
a∈A x2a

)j/2 if j even;(∑
a∈A xa

) (∑
a∈A x2a

)(j−1)/2 otherwise.

Proof. The theorem holds for j = 0 since PA(0; 0) = 1 and P (0; n) = 0 for n ≥ 1. The palindromic
compositions of n with one part are exactly those for which n = a ∈ A, so PA(1; x) =

∑
a∈A xa, thus,

the theorem holds for j = 1. We now generate the palindromic compositions of n with j parts in A
recursively by the following process: to any palindromic composition of n− 2a with j − 2 parts in A,
add a ∈ A on both ends. Thus, for n ≥ 1,

PA(j; n) =
∑

a∈A

PA(j − 2; n− 2a).

Multiplying by xn and summing over n ≥ 1, then changing the order of summation and simplifying
results in

PA(j; x) = PA(j − 2;x)
∑

a∈A

x2a.

Iterating this equation and using either PA(0; x) = 1 (j even) or PA(1; x) =
∑

a∈A xa (j odd) gives
the desired result. ¤

As a consequence of Theorem 3.1 we get the following result.
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Theorem 3.2. Let A ⊆ N. Then the generating function for the number of palindromic compositions
of n with parts in A is given by

PA(x) =
1 +

∑
a∈A xa

1−∑
a∈A x2a

.

Proof. Since PA(n) =
∑

j≥0 PA(j; n) we get that PA(x) =
∑

j≥0 PA(j; x). Using Theorem 3.1 we get
the desired result after simplification. ¤

Example 3.3. Chinn and Heubach (see [2]) derived explicit formulas in terms of compositions and
recursive formulas in terms of palindromes for the number of palindromes of n without k, but did
not give a generating function for these quantities. Theorem 3.2 with A = Nk = N\{k} yields after
simplification

PNk
(x) =

1 + x− xk + xk+2

1− 2x2 + x2k − x2(k+1)
.

Example 3.4. (see [3, Lemma 2, Part 1]) Let A = {1, k}. Then Theorem 3.2 yields

PA(x) =
1 + x + xk

1− x2 − x2k
.

Example 3.5. If we consider palindromes of n with only odd summands, then Theorem 3.2 gives

P{1,3,5,...}(x) =
1 +

∑
i≥0 x2i+1

1−∑
i≥0 x2(2i+1)

=
(1 + x− x2)(1 + x2)

1− x2 − x4
.

Thus, the number of palindromes of n with odd parts for n ≥ 1 is given by Fn/2 if n is even, and
F(n+3)/2 if n is odd, as was shown by a direct argument not involving the generating function in [5].

The above theorems can be generalized. Let A = {a1, a2, . . .}, and let QA(n, r1, r2, . . .) (respectively
QA(j;n, r1, r2, . . .)) be the number of palindromic compositions of n (respectively with j parts) such
that the part ai ∈ A occurs exactly ri times in the composition (with

∑
i ri = j). We define

QA(j; x, ta1 , ta2 , . . .) =
∑

n≥0

∑

r1+r2+...=j

QA(j; n, r1, r2, . . .)xn
∏

i≥0

tri
ai

,

and
QA(x, ta1 , ta2 , . . .) =

∑

n≥0

∑

r1+r2+...≥0

QA(n, r1, r2, . . .)xn
∏

i≥0

tri
ai

,

where x and tai are indeterminate variables.

Using arguments similar to those in the proofs of Theorems 3.1 and 3.2, with the type of refinement
(now symmetric for both ends of the composition) used in the proof of Theorem 2.10 we get the
following generalization.

Theorem 3.6. Let A ⊆ N and j ≥ 0. Then

QA(j;x, ta1 , ta2 , . . .) =

{ (∑
a∈A t2ax2a

)j/2 if j even;(∑
a∈A taxa

) (∑
a∈A t2ax2a

)(j−1)/2 otherwise.

Moreover,

QA(x, ta1 , ta2 , . . .) =
1 +

∑
a∈A taxa

1−∑
a∈A t2ax2a

.
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If ta = 1 for all a ∈ A, then Theorem 3.6 gives Theorems 3.1 and 3.2.

Theorem 3.6 also allows us to count the number of palindromic compositions QB
A(n,m) of n with parts

in A such that m parts are in B ⊆ A. We denote the generating function for these compositions by
QB

A(x, y), where QB
A(x, y) =

∑
n≥0

∑
m≥0 QB

A(n,m)xnym. Setting ta = 1 for all a ∈ A\B and ta = y
for all a ∈ B in Theorem 3.6 yields the following result.

Corollary 3.7. Let A,B be two sets such that B ⊆ A. Then

QB
A(x, y) =

1 +
∑

a∈A\B xa + y
∑

a∈B xa

1−∑
a∈A\B x2a − y2

∑
a∈B x2a

.

Moreover,

QB
A(x, y) =

∑

m≥0




(∑
a∈B x2a

)m
(
1 +

∑
a∈A\B xa

)

(
1−∑

a∈A\B x2a
)m+1 y2m +

(∑
a∈B x2a

)m (∑
a∈B xa

)
(
1−∑

a∈A\B x2a
)m+1 y2m+1


 .

Proof. The second formula for QB
A(x, y) follows from the first by splitting the numerator into sum-

mands with and without a factor of y, and then applying algebraic manipulations to utilize the series
expansion of 1/(1− x). ¤

Example 3.8. Let A = N and B = {2n|n ∈ N}. Since
∑

a even

xa =
x2

1− x2
,

∑
a odd

xa =
x

1− x2
,

∑
a even

x2a =
(

x4

1− x4

)
and

∑
a odd

x2a =
x2

1− x4
,

the generating function for the number palindromic compositions of n with 2m and 2m+1 even parts,
respectively, is given by

x4m(1 + x− x2)(1 + x2)
(1− x2 − x4)m+1

and
x4m+2(1 + x2)

(1− x2 − x4)m+1
.

In particular, if we set m = 0 in the first expression, then we recover Example 3.5.

Example 3.9. Grimaldi [5] has counted the number of palindromic compositions of n with exactly m
parts, but did not give a generating function for this quantity. We can easily read off these values as
the coefficient of xnym by using B = A = N in the first expression of Corollary 3.7. In this case, the
generating function reduces to

QNN(x, y) =
1 + y

∑
a∈N xa

1− y2
∑

a∈N x2a
=

(1 + xy − x)(1 + x)
1− x2y2 − x2

.

4. Carlitz Compositions

A Carlitz composition of n, introduced in [1], is a composition of n in which no adjacent parts are the
same. We denote the number of Carlitz compositions of n with parts in A (respectively with j parts
in A) by EA(n) (respectively EA(j;n)). The corresponding generating functions are given by

EA(x) =
∑

n≥0

EA(n)xn and EA(j; x) =
∑

n≥0

EA(j;n)xn,

where we define EA(0) = EA(0; 0) = 1 and EA(j; 0) = 0 for j ≥ 1. In particular, EA(0; x) = 1.
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Theorem 4.1. Let A ⊆ N. Then the generating function for the number of Carlitz compositions of
n with parts in A is given by

EA(x) =
1

1−∑
a∈A

xa

1+xa

.

Proof. We create the Carlitz compositions of n recursively by adding a ∈ A to any Carlitz composition
of n − a, except for those compositions of n − a that end in a. Let EA(j, a; n) denote the number
of Carlitz compositions of n that end in a, and let EA(j, a; x) denote the corresponding generating
function, where EA(1, a; n) = 1 if n = a and 0 otherwise. This implies that EA(1, a; x) = xa. The
recursive creation leads to

EA(j, a;x) = xaEA(j − 1;x)− xaEA(j − 1, a; x) for j ≥ 1.(4.1)

We now show by induction on j that for j ≥ 1

EA(j, a;x) =
j∑

k=1

(−1)k−1xkaEA(j − k; x).(4.2)

For j = 1, EA(1, a; x) = xa = (−1)0xaEA(0; x). Now assume that the induction hypothesis is true for
j − 1. Substituting Eq. (4.2) into Eq. (4.1) gives

EA(j, a; x) = xaEA(j − 1;x)− xa

j−1∑

i=1

(−1)i−1xiaEA(j − 1− i; x)

= xaEA(j − 1;x) +
j−1∑

i=1

(−1)(i+1)−1x(i+1)aEA(j − (i + 1); x)

=
j∑

k=1

(−1)k−1xkaEA(j − k; x).

By definition, EA(x) =
∑

a∈A

∑
j≥0 EA(j, a; x). Using that

∑
a∈A EA(0, a; x) = EA(0; x) = 1 and

Eq. (4.2) for the terms with j ≥ 1 we get

EA(x) = 1 +
∑

a∈A

∑

j≥1

j∑

k=1

(−1)k−1xkaEA(j − k; x).

Changing the order of summation for the two innermost sums and using that by definition EA(j;x) = 0
for j < 0, we obtain

EA(x) = 1 +
∑

a∈A

∑

k≥1

(−1)k−1xka
∑

j≥1

EA(j − k; x)

= 1 + EA(x)
∑

a∈A

∑

k≥1

(−1)k−1xka = 1 + EA(x)
∑

a∈A

xa

1 + xa
.

Solving for EA(x) gives the result. ¤
Example 4.2. If A = N, then the above theorem gives the generating function for the number of
Carlitz compositions of n, namely

EN(x) =
1

1−∑
j≥1

xj

1+xj

.
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This can be shown to agree with the function given in [7], namely C(x) = 1
1−σ(x) , where σ(x) =

∑
j≥1

xj(−1)j−1

1−xj as follows:

∑

j≥1

xj

1 + xj
=

∑

j≥1

xj
∑

k≥0

((−x)j)
k

=
∑

j≥1

∑

k≥0

(−1)k(xj)
k+1

=
∑

j≥1

∑

k≥1

(−1)k−1(xj)
k

and
∑

j≥1

xj(−1)j−1

1− xj
=

∑

j≥1

xj(−1)j−1
∑

k≥0

(xj)
k

=
∑

j≥1

∑

k≥0

(−1)j−1(xj)
k+1

=
∑

j≥1

∑

k≥1

(−1)j−1(xj)
k
.

Theorem 4.1 can be generalized as follows. Let A = {a1, a2, . . .}, and let EA(n, r1, r2, . . .) (respectively
EA(j; n, r1, r2, . . .)) be the number of Carlitz compositions of n (respectively with j parts) such that
the part ai ∈ A occurs exactly ri times in the composition (with

∑
i ri = j) and EA(0; 0, 0, . . .) = 1

and EA(0; n, 0, . . .) = 0 for n 6= 0. We define the corresponding generating functions

EA(j; x, ta1 , ta2 , . . .) =
∑

n≥0

∑

r1+r2+...=j

EA(j; n, r1, r2, . . .)xn
∏

i≥0

tri
ai

and
EA(x, ta1 , ta2 , . . .) =

∑

n≥0

∑

r1+r2+...≥0

EA(n, r1, r2, . . .)xn
∏

i≥0

tri
ai

,

where x and tai are indeterminate variables.

Theorem 4.3. Let A = {a1, a2, . . .} ⊆ N. Then

EA(x; ta1 , ta2 , . . .) =
1

1−∑
a∈A

taxa

1+taxa

.

Proof. As before, we need to look at the last summand, so we let EA(j, a;n, r1, r2, . . .) denote the
number of Carlitz compositions of n with j parts that end in a such that the part ai ∈ A oc-
curs exactly ri times in the composition, with

∑
i ri = j, with corresponding generating function

EA(j, a; x, ta1 , ta2 , . . .). Initial conditions give EA(0, a;x, ta1 , ta2 , . . .) = 1 and EA(1, a; x, ta1 , ta2 , . . .) =
xata. With an argument similar to that in Theorem 2.10 with respect to the number of times a part
occurs, we get a corresponding recursive equation for j ≥ 1:

EA(j, a;x, ta1 , ta2 , . . .) = xataEA(j − 1;x, t1, t2, . . .)− xataEA(j − 1, a;x, t1, t2, . . .).

Using induction, this recursion yields

EA(j, a;x, ta1 , ta2 , . . .) =
j∑

k=1

(−1)k−1xkatkaEA(j − k;x, ta1 , ta2 , . . .) for j ≥ 1.

Replacing EA(x) by EA(x, ta1 , ta2 , . . .) in the remainder of the proof of Theorem 4.1 yields

EA(x, ta1 , ta2 , . . .) = 1 + EA(x, ta1 , ta2 , . . .) ·
∑

a∈A

taxa

1 + taxa
,

from which the result follows. ¤
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Theorem 4.3 also allows us to count the number of Carlitz compositions EB
A (n,m) of n with parts

in A such that m parts are in B ⊆ A. We denote the generating function for these compositions by
EB

A (x, y), where EB
A (x, y) =

∑
n≥0

∑
m≥0 EB

A (n,m)xnym. Setting ta = 1 for all a ∈ A\B and ta = y
for all a ∈ B in Theorem 4.3 yields the following result.

Corollary 4.4. Let B ⊆ A ⊆ N. Then

EB
A (x, y) =

1
1−∑

a∈A\B
xa

1+xa −
∑

a∈B
yxa

1+yxa

.

Example 4.5. Let A = N, B = {k} and define W =
∑

j≥1,j 6=k
xj

1+xj . Then

EB
A (x, y) =

1

1−W − yxk

(1+yxk)

=
1 + yxk

1−W − yWxk
=

(1 + yxk)
(1−W )

∑

m≥0

Wmxkmym

(1−W )m

= (1 + yxk)
∑

m≥0

Wmxmk

(1−W )m+1
ym =

∑

m≥0

Wmxmk

(1−W )m+1
ym +

∑

m≥0

Wmxmk+k

(1−W )m+1
ym+1

=


 1

1−W
+

∑

m≥1

Wmxmk

(1−W )m+1
ym


 +

∑

m≥0

Wmxmk+k

(1−W )m+1
ym+1

=
1

1−W
+

∑

m≥0

Wm+1xmk+k

(1−W )m+2
ym+1 +

∑

m≥0

(1−W )Wmxmk+k

(1−W )m+2
ym+1

=
1

1−W
+

∑

m≥1

Wmxmk+k

(1−W )m+2
ym+1.

Thus, the generating function for the number of Carlitz compositions of n with exactly m occurrences
of k is given by

xkm
(∑

j 6=k,j≥1
xj

1+xj

)m−1

(
1−∑

j 6=k,j≥1
xj

1+xj

)m+1

for all m ≥ 1.

5. Carlitz palindromic compositions

A Carlitz palindromic composition of n is a palindromic composition of n in which no adjacent parts
are the same. Note that a Carlitz palindromic composition with an even number of parts cannot
occur, as the two middle parts would have to be the same.

We denote the number of Carlitz palindromic compositions of n with parts in A (respectively with j
parts in A) by FA(n) (respectively FA(j; n)). The corresponding generating functions are given by

FA(x) =
∑

n≥0

FA(n)xn and FA(j; x) =
∑

n≥0

FA(j; n)xn,

where we define FA(0) = FA(0; 0) = 1 and FA(j; 0) = 0 for j 6= 0. Furthermore, FA(1; n) = 1 if
n = a ∈ A and FA(1; n) = 0 otherwise. Thus, FA(0; x) = 1 and FA(1; x) =

∑
a∈A xa, and from the

remark above it follows that FA(2j; x) = 0 for j ≥ 1.
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The following theorem gives the generating function for the number of Carlitz palindromic composi-
tions of n.

Theorem 5.1. Let A ⊆ N. Then the generating function for the number of Carlitz palindromic
compositions of n with parts in A is given by

FA(x) =

∑
a∈A

xa

1+x2a

1−∑
a∈A

x2a

1+x2a

.

Proof. Again, we use a recursive method to create the Carlitz palindromic compositions of n, by
adding a ∈ A to both ends of a Carlitz palindromic composition of n − 2a, except for those that
begin and end in a. Let FA(j, a; x) be the generating function for the number of Carlitz palindromic
compositions of n with j parts that start and end in a. Then, for j ≥ 1, we get

FA(2j + 1, a; x) = x2aFA(2j − 1; x)− x2aFA(2j − 1, a; x).

Using induction on j as in the proof of Theorem 4.1 and utilizing the initial condition FA(1, a;x) = xa

we can prove that

FA(2j + 1, a; x) =

(
j∑

k=1

(−1)k−1(x2a)
k
FA((2j + 1)− 2k; x)

)
+ (−1)jx(2j+1)a.

Note that this formula also holds for j = 0. Since FA(x) =
∑

a∈A

∑
j≥0 FA(2j + 1, a;x), we get

FA(x) =
∑

a∈A

∑

j≥0

j∑

k=1

(−1)k−1(x2a)
k
FA((2j + 1)− 2k; x) +

∑

a∈A

∑

j≥0

(−1)jx(2j+1)a.

For the first sum we proceed as in the proof of Theorem 4.1, which yields

FA(x) = FA(x) ·
(∑

a∈A

x2a

1 + x2a

)
+

∑

a∈A

xa

1 + x2a
.

Solving for FA(x) gives the result. ¤

Example 5.2. If A = N, then the above theorem gives the generating function for the number of

Carlitz palindromic compositions of n, namely FN(x) =
∑

n≥1
xn

1+x2n

1−∑
n≥1

x2n

1+x2n

.

As for Carlitz compositions, we can generalize Theorem 5.1. Let A = {a1, a2, . . .}, and denote by
FA(n, r1, r2, . . .) (respectively FA(j; n, r1, r2, . . .)) the number of Carlitz palindromic compositions of
n (respectively with j parts) such that the part ai ∈ A occurs exactly ri times in the composition
(with

∑
i ri = j) and define FA(0; 0, 0, . . .) = 1 and FA(0; n, 0, . . .) = 0 for n 6= 0. The corresponding

generating functions are given by

FA(j; x, ta1 , ta2 , . . .) =
∑

n≥0

∑

r1+r2+...=j

FA(j; n, r1, r2, . . .)xn
∏

i≥0

tri
ai

and
FA(x, ta1 , ta2 , . . .) =

∑

n≥0

∑

r1+r2+...≥0

FA(n, r1, r2, . . .)xn
∏

i≥0

tri
ai

,

where x and tai are indeterminate variables.
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Theorem 5.3. Let A = {a1, a2, . . .} ⊆ N. Then

FA(x, ta1 , ta2 , . . .) =

∑
a∈A

taxa

1+t2ax2a

1−∑
a∈A

t2ax2a

1+t2ax2a

.

Proof. The result follows as in the proof of Theorem 4.3, with the appropriate modifications due to
the symmetry of the palindromic compositions. ¤

Theorem 5.3 also allows us to count the number of Carlitz palindromic compositions FB
A (n,m) of

n with parts in A such that m parts are in B ⊆ A. We denote the generating function for these
compositions by FB

A (x, y), where FB
A (x, y) =

∑
n≥0

∑
m≥0 FB

A (n,m)xnym. Setting ta = 1 for all
a ∈ A\B and ta = y for all a ∈ B in Theorem 5.3 yields the following result.

Corollary 5.4. Let B ⊆ A ⊆ N. Then

FB
A (x, y) =

∑
a∈A\B

xa

1+x2a +
∑

a∈B
yxa

1+y2x2a

1−∑
a∈A\B

x2a

1+x2a −
∑

a∈B
y2x2a

1+yx2a

.

6. Concluding Remarks

We have derived generating functions for (palindromic) compositions and for Carlitz (palindromic)
compositions of n with parts in A ⊆ N, as well as generating functions for these compositions where
each part occurs a given number of times, or where a given number of parts are in a subset of A. This
very general framework can be applied to many special cases, of which we have investigated a small
selection.
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