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Nim and Wythoff

◮ Nim: Select one of the n stacks, take at least one token

◮ Wythoff: Take any number of tokens from one stack OR select

the same number of tokens from both stacks
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How to win????

Question: For a given starting position (= heights of the stacks) in a

game, can we determine whether Player I or Player II has a winning

strategy, that is, can make moves in such a way that s/he will win, no

matter how the other player plays? (Last player to move wins)

Goal: Determine the set of losing positions, that is, all positions that

result in a loss for the player playing from that position.

Smaller Goal: Say something about the structure of the losing

positions.
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Combinatorial Games

Definition

An impartial combinatorial game has the following properties:

◮ each player has the same moves available at each point in the

game (as opposed to chess, where there are white and black

pieces).

◮ no randomness (dice, spinners) is involved and each player has

complete information about the game and the potential moves
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Analyzing Nim and Wythoff

Definition

A position in the game is denoted by p = (p1, p2, . . . , pn), where

pi ≥ 0 denotes the number of tokens in stack i. A position that can be

reached from the current position by a legal move is called an option.

The directed graph which has the positions as the nodes and an arrow

between a position and its options is called the game graph.

We do not distinguish between a position and any of its

rearrangements. We will use the position that is ordered in decreasing

order as the representative.
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Options of position (3, 2) in Nim and Wythoff

(3, 2) ;

(3, 2) ;

Additional moves for Wythoff

(3, 2) ;
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Options of position (3, 2) in Nim and Wythoff

(3, 2) ; (2, 2), (1, 2), (0, 2)

(3, 2) ;

Additional moves for Wythoff

(3, 2) ;
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Options of position (3, 2) in Nim and Wythoff

(3, 2) ; (2, 2), (1, 2), (0, 2)

(3, 2) ; (3, 1), (3, 0)

Additional moves for Wythoff

(3, 2) ;
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Options of position (3, 2) in Nim and Wythoff

(3, 2) ; (2, 2), (1, 2), (0, 2)

(3, 2) ; (3, 1), (3, 0)

Additional moves for Wythoff

(3, 2) ; (2, 1), (1, 0)
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Options of position (3, 2) in Nim and Wythoff

(3, 2) ; (2, 2), (1, 2), (0, 2)

(3, 2) ; (3, 1), (3, 0)

Additional moves for Wythoff

(3, 2) ; (2, 1), (1, 0)

Overall

(3, 2) ; (3, 1), (3, 0), (2, 2), (2, 1), (2, 0) for Nim

(3, 2) ; (3, 1), (3, 0), (2, 2), (2, 1), (2, 0), (1, 0) for Wythoff
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Game graph for position (3, 2) for Nim

(3, 2)
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Game graph for position (3, 2) for Nim

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)
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Game graph for position (3, 2) for Nim

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)
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Game graph for position (3, 2) for Nim

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0)
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Game graph for position (3, 2) for Wythoff

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0)
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Impartial Games

Definition

A position is a P position for the player about to make a move if the

Previous player can force a win (that is, the player about to make a

move is in a losing position). The position is a N position if the Next

player (the player about to make a move) can force a win.

For impartial games, there are only two outcome classes for any

position, namely winning position (N position) or losing position

(P position). The set of losing positions is denoted by L.
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:

◮ The position has at least one option that is a losing (P) position
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:

◮ The position has at least one option that is a losing (P) position

◮ All options of the position are winning (N ) positions
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:

◮ The position has at least one option that is a losing (P) position

⇒ winning position and should be labeled N

◮ All options of the position are winning (N ) positions
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:

◮ The position has at least one option that is a losing (P) position

⇒ winning position and should be labeled N

◮ All options of the position are winning (N ) positions

⇒ losing position and should be labeled P
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Recursive labeling

To find out whether Player I has a winning strategy, we label the

nodes of the game graph recursively as follows:

◮ Sinks of the game graph are always losing (P) positions.

Next we select any position (node) whose options (offsprings) are all

labeled. There are two cases:

◮ The position has at least one option that is a losing (P) position

⇒ winning position and should be labeled N

◮ All options of the position are winning (N ) positions

⇒ losing position and should be labeled P

The label of the starting position of the game then tells whether Player

I (N ) or Player II (P) has a winning strategy.
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0)
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P

N

N

N
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P

N

N

N

P
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P

N

N

N

P

N

N
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P

N

N

N

P

N

N P
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Is (3, 2) winning or losing for Nim ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P

N

N

N

P

N

N P

N
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Is (3, 2) winning or losing for Wythoff ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0)
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Is (3, 2) winning or losing for Wythoff ?

(3, 2)

(3, 1)

(3, 0)

(2, 2)

(2, 1)

(2, 0)(1, 1)

(1, 0)

(0, 0) P

N

N

N

N

P

N N

N
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Take home lesson

◮ There is no legal move from a losing position to another losing

position

◮ There is a recursive way to determine whether a position is

losing or winning

◮ One can define a recursive function, the Grundy function, whose

value is zero for a losing position, and positive for a winning

position.

◮ Using a computer program, one can then obtain losing positions

and guess a pattern for the losing positions.
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An important tool

Theorem

Suppose the positions of a finite impartial game can be partitioned

into mutually exclusive sets A and B with the properties:

I. every option of a position in A is in B;

II. every position in B has at least one option in A; and

III. the final positions are in A.

Then A = L and B = W .
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Proof strategy

◮ Obtain a candidate set S for the set of losing positions L

◮ Show that any move from a position p ∈ S leads to a position

p′ /∈ S (I)

◮ Show that for every position p /∈ S, there is a move that leads to a

position p′ ∈ S (II)

Often (as is the case for Nim and Wythoff), (0, 0, . . . , 0) is the only

final position and it is easy to see that (III) is satisfied.
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How to win in Nim

Definition

The digital sum a ⊕ b ⊕ · · · ⊕ k of of integers a, b, . . . , k is obtained

by translating the values into their binary representation and then

adding them without carry-over.
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How to win in Nim

Definition

The digital sum a ⊕ b ⊕ · · · ⊕ k of of integers a, b, . . . , k is obtained

by translating the values into their binary representation and then

adding them without carry-over.

Example

The digital sum 12 ⊕ 13 ⊕ 7 equals 6:

12 1 1 0 0

13 1 1 0 1

7 1 1 1

0 1 1 0
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How to win in Nim

Theorem

For the game of Nim, the set of losing positions is given by

L = {(p1, p2, . . . , pn) | p1 ⊕ p2 ⊕ · · · ⊕ pn = 0}.

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an

bn

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an 0

bn 0

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an 0 1

bn 0
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an 0 1

bn 0 2
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an 0 1 3

bn 0 2

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an 0 1 3

bn 0 2 5

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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How to win in Wythoff

Let ϕ = 1+
√

5
2

. Then the set of losing positions is given by

L = {(⌊n · ϕ⌋, ⌊n · ϕ⌋ + n)|n ≥ 0}

Elements (an, bn) ∈ L can be created recursively as follows:

◮ For an, find he smallest positive integer not yet used for ai and bi,

i < n.

◮ bn = an + n.

n 0 1 2 3 4 5

an 0 1 3 4 6 8

bn 0 2 5 7 10 13

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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More on Nim and Wythoff
Generalization

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows:
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Generalization

Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows: (a, b) = (6, 5)
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More on Nim and Wythoff
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Theorem

For the game of Wythoff, for any given position (a, b) there is exactly

one losing position of each of the forms (a, y), (x, b), (z, z + (b − a))
for some x ≥ 0, y ≥ 0, and z ≥ 0.

This structural result can be visualized as follows: (a, b) = (6, 5)

Losing positions: (6, 10), (3, 5), and (2, 1).
S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same

number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same

number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

◮ take the same number of tokens from ALL stacks
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same

number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

◮ take the same number of tokens from ALL stacks

◮ take the same number of tokens from any TWO stacks
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Generalization of Wythoff to n stacks

Wythoff: Take any number of tokens from one stack OR select the same

number of tokens from both stacks

Generalization: Take any number of tokens from one stack OR

◮ take the same number of tokens from ALL stacks

◮ take the same number of tokens from any TWO stacks

◮ take the same number of tokens from any non-empty SUBSET

of stacks

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Generalized Wythoff on n stacks

Let B ⊆ P({1, 2, 3, . . . , n}) with the following conditions:

1. ∅ /∈ B

2. {i} ∈ B for i = 1, . . . , n.

A legal move in generalized Wythoff GWn(B) on n stacks induced by

B consists of:

◮ Choose a set A ∈ B

◮ Remove the same number of tokens from each stack whose index

is in A

The first player who cannot move loses.
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Examples

◮ Nim: Select one of the n stacks, take at least one token

◮ Wythoff: Either take any number of tokens from one stack OR

select the same number of tokens from both stacks
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Examples

◮ Nim: Select one of the n stacks, take at least one token

B = {{1}, {2}, . . . , {n}}

◮ Wythoff: Either take any number of tokens from one stack OR

select the same number of tokens from both stacks
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Examples

◮ Nim: Select one of the n stacks, take at least one token

B = {{1}, {2}, . . . , {n}}

◮ Wythoff: Either take any number of tokens from one stack OR

select the same number of tokens from both stacks

B = {{1}, {2}, {1, 2}}

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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More on Nim and Wythoff
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Generalized Wythoff
Result and Conjecture

−→e i = ith unit vector; −→e A =
∑

i∈A
−→e i

Conjecture

In the game of generalized Wythoff GWn(B), for any position
−→p = (p1, p2, . . . , pn) and any A = {i1, i2, . . . , ik} ∈ B, there is a

unique losing position of the form −→p + m · −→e A, where

m ≥ −mini∈A{pi}.

Theorem

The conjecture is true for |A| ≤ 2, that is, for any given position we

can find a losing position for which only one or two of the stack

heights are changed.
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Example

GW3({{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}) - three stacks, with play

on either a single or a pair of stacks. −→p = (11, 17, 20)

A p̃ ∈ L = −→p + m · −→e A

{1} (26, 17, 20) = (11, 17, 20) + 15 · (1, 0, 0)
{2} (11, 31, 20) = (11, 17, 20) + 14 · (0, 1, 0)
{3} (11, 17, 36) = (11, 17, 20) + 16 · (0, 0, 1)
{1, 2} (19, 25, 20) = (11, 17, 20) + 8 · (1, 1, 0)
{1, 3} (1, 17, 10) = (11, 17, 20) − 10 · (1, 0, 1)
{2, 3} (11, 35, 38) = (11, 17, 20) + 18 · (0, 1, 1)

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Example

B1 = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}); B2 = B1 ∪ {1, 2, 3}

−→p = (11, 17, 20)

A p̃1 p̃2

{1} (26, 17, 20) (40, 17, 20)
{2} (11, 31, 20) (11, 1, 20)
{3} (11, 17, 36) (11, 17, 27)
{1, 2} (19, 25, 20) (7, 13, 20)
{1, 3} (1, 17, 10) (8, 17, 17)
{2, 3} (11, 35, 38) (11, 12, 15)
{1, 2, 3} — (15, 21, 24)
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Generalized Wythoff
Result and Conjecture

Proof for |A| = 1.

To show: For any position (p1, p2, . . . , pn) there exists a unique

position (x, p2, . . . , pn) ∈ L.

Uniqueness: Assume there are at least two positions of this form,

p̃1 = (x, p2, . . . , pn) and p̃2 = (y, p2, . . . , pn), both in L, with x > y.

Then there exists a legal move from a losing position to a losing

position (which is not possible) by taking x − y tokens from the first

stack of p̃1 = (x, p2, . . . , pn). This is an allowed move as B always

contains the singletons.
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Generalized Wythoff
Result and Conjecture

Proof for |A| = 1 continued.

Existence: Assume all positions of the form p = (x, p2, . . . , pn) are

winning positions. Upper bound on the number of moves from p:

◮ 2n − 1 ways to choose the stacks to play on

◮ maxi=2...n pi different choices for number of tokens

◮ Let M = (2n − 1)(maxi=2...n pi).

Now consider the M + 1 positions

(0, p2, . . . , pn)
(1, p2, . . . , pn)

...

(M, p2, . . . , pn)
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More on Nim and Wythoff
Generalization

Generalized Wythoff
Result and Conjecture

Proof for |A| = 1 continued.

(i, p2, . . . , pn) ∈ W implies that there is at least one move ti from

(i, p2, . . . , pn) to a losing position qi.

(0, p2, . . . , pn) + t0 = q0 ∈ L
(1, p2, . . . , pn) + t1 = q1 ∈ L

...

(M, p2, . . . , pn) + tM = qM ∈ L
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Generalization

Generalized Wythoff
Result and Conjecture

Proof for |A| = 1 continued.

By the pigeon hole principle, there must be a repeated move, say t,

yielding

qi = (i, p2, . . . , pn) − t = (i − t1, p2 − t2, . . . , pn − tn) ∈ L

qj = (j, p2, . . . , pn) − t = (j − t1, p2 − t2, . . . , pn − tn) ∈ L

But we already saw that this is not possible, and so there must be a

losing position of the form (x, p2, . . . , pn). The proof easily applies to

any set A = {i}.

Note: What we have proved is that from any position we can “see” a

losing position in any direction parallel to one of the axes of R
n.
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Generalization

Generalized Wythoff
Result and Conjecture

Proof for |A| = 2

◮ Proof is much more complicated

◮ We define the notion of a Wythoff set (a set that generalizes the

properties of the set of losing positions constructed recursively

for Wythoff )

◮ Uses a theorem about the interplay between the cardinalities of a

sequence of two increasing sets and their accumulated sizes (=

sums of their respective elements)

◮ Does not yet seem to generalize to |A| > 2.
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Generalized Wythoff
Result and Conjecture

Thank You!

Slides available from

http://www.calstatela.edu/faculty/sheubac
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Appendix For Further Reading

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers

is the least non-negative integer which does not occur in the set. It is

denoted by mex{a, b, c, . . . , k}.

Example

mex{1, 4, 5, 7} =
mex{0, 1, 2, 6} =
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Appendix For Further Reading

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers

is the least non-negative integer which does not occur in the set. It is

denoted by mex{a, b, c, . . . , k}.

Example

mex{1, 4, 5, 7} = 0

mex{0, 1, 2, 6} =
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Appendix For Further Reading

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers

is the least non-negative integer which does not occur in the set. It is

denoted by mex{a, b, c, . . . , k}.

Example

mex{1, 4, 5, 7} = 0

mex{0, 1, 2, 6} = 3

S. Heubach, M. Dufour Nim, Wythoff and beyond - let’s play!



Appendix For Further Reading

The Grundy Function

Definition

The Grundy function G(p) of a position p is defined recursively as

follows:

◮ G(p) = 0 for any final position p.

◮ G(p) = mex{G(q)|q is an option of p}.
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Appendix For Further Reading

The Grundy Function

Definition

The Grundy function G(p) of a position p is defined recursively as

follows:

◮ G(p) = 0 for any final position p.

◮ G(p) = mex{G(q)|q is an option of p}.

Theorem

For a finite impartial game, p belongs to class P if and only if

G(p) = 0.
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