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Abstract. We discuss relationships among T-colorings of graphs and chromatic
numbers, fractional chromatic numbers, and circular chromatic numbers of distance
graphs. We first prove that for any finite integral set 7" that contains 0, the asymptotic
T-coloring ratio R(T') is equal to the fractional chromatic number of the distance
graph G(Z,D), where D = T'— {0}. This fact is then used to study the distance
graphs with distance sets of the form D,,, = {1,2,---,m} — {k}. The chromatic
numbers and the fractional chromatic numbers of G(Z, D,, ;) are determined for all
values of m and k. Furthermore, circular chromatic numbers of G(Z, D, ;) for some

special values of m and k are obtained.
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1 Introduction

The T-coloring problem was formulated by Hale [18] as a model for the channel
assignment problem, in which an integer broadcast channel is assigned to each of
several locations so that interference among nearby locations is avoided. Interference
is modeled by a non-negative integral set 1" containing 0 (called a T'-set) as forbidden
channel separations. One can construct a graph G = (V, F) such that each vertex
represents a location; two vertices are adjacent if their corresponding locations are
nearby. Thereafter a valid channel assignment or T-coloring is a mapping f from the
vertex set V' of G to the set of non-negative integers {0, 1,2,---} such that |f(z) —
f(y)| € T whenever zy € E. The span of a T-coloring f is the difference between
the largest and the smallest numbers in f(V), i.e., max {|f(u) — f(v)| : u,v € V}.
Given T and G, the T-span of G, denoted by spy(G), is the minimum span among
all T-colorings of G.

T-coloring has been extensively studied in the literature (see [4, 5, 16, 23, 24,
25, 26, 30, 31, 32, 35]). Let o, denote spy(K,), where K, is a complete graph

with n vertices. Griggs and Liu [16] proved that the difference optimum sequence,

o0
n=1>

Ao = (opy1 — 0p) is eventually periodic. This implies that for any T-set, the
asymptotic T-coloring ratio

R(T) := lim o

exists and is a rational number. This result was also proven by Rabinowitz and Proulx
[30] and Cantor and Gordon [1] by different approaches.

The notion of distance graphs originated with the plane-coloring problem: What
is the fewest number of colors needed to color all points of a Euclidean plane such
that points at unit distances are colored with different colors. It is well-known that
four colors are necessary [28] and seven colors are sufficient [17]. However, the exact
number of colors needed remains unknown (see [6]). Motivated by this problem,
Eggleton [10] made the following generalization. Suppose S is a subset of a metric
space M with metric d, and D is a set of positive real numbers. The distance graph
G(S, D) with distance set D is the graph with vertex set S and edge set {zy : d(z,y) €
D}. The objective is to determine (S, D), the chromatic number of G(S, D). Note
that the plane-coloring problem introduced above is equivalent to finding y(R?,{1}).

Let D be a set of positive integers (called D-set). The distance graph to be
studied in this article is G(Z, D), which has Z as the vertex set and {uv : |[u—v| € D}
as the edge set. The problem of finding x (7, D) for different D-sets has been studied
extensively (see [2, 7,9, 11, 12, 13, 14, 21, 37, 38, 39, 40, 41]).



A fractional coloring of a graph G is a mapping ¢ from Z(G), the set of all

independent sets of G, to the interval [0, 1] such that > ¢(I) > 1 for all vertices
zeleZ(G)

x in G. The fractional chromatic number x¢(G) of G is the infimum of the value

> ¢(1) of a fractional coloring ¢ of G' ([15, 22, 33, 34]).
IeZ(G)

For a given T-set, letting D = T — {0}, Liu [26] proved that the asymptotic
T-coloring ratio R(T') is a lower bound of x(Z, D). Hence, T-colorings and distance
graphs are closely related. We shall explore further relationships between these two
concepts. In Section 2, we prove that for any T-set, R(T) is equal to the fractional
chromatic number of the distance graph G(Z, D), if D =T — {0}. This relationship
provides new insights concerning the parameter R(7"), and can be used to simplify
the proofs of some known results regarding R(7T').

Section 3 focuses on the family of distance graphs with D-sets of the form
Dpx={1,2,---.,m}—{k}. The chromatic numbers of such distance graphs, denoted
as X(Z, Dy, i), have been investigated in the following articles. In [11], Eggleton,
Erdés and Skilton obtained the solution for k£ = 1, and partial solutions for k = 2:
X(Z, D) = |22 ] for any m > 2, X(Z, Dp2) = |242] when m # 3 (mod 4), and
|22 ] < x(Z, Do) < [™F2] for any m > 4 with m = 3 (mod 4). For 3 <k < m,

the same authors provided the following bounds:
ma{k, |12 + 1))t} < X(Z D) < min{m, [5(2 +3) &},

where t = 2if k=3 andt =k — 2 if k > 4. The same result for the case k = 1
was also proven by Kemnitz and Kolberg in [21] by a different approach. The lower
bound of x(Z, Dy, ) in the above has been improved to [2£] by Liu ([26]), who
also showed that the new bound is sharp for all pairs of integers (m, k) where k is
odd. Furthermore, complete solutions for £ = 2 and 4, and partial solutions for other
even integers k are given in [26].

The main results of this paper are complete solutions for the chromatic numbers
and the fractional chromatic numbers of the distance graphs G(Z, D, ) for all values
m and k. These results are also applied to study the circular chromatic number of
distance graphs.

Suppose k and d are positive integers such that k > 2d. A (k,d)-coloring of a
graph G = (V, E) is a mapping ¢ from V to {0, 1, - -+, k—1} such that ||c(z) —c(y)||x >
d for any edge xy in G, where ||a||y = min{a, k — a}. The circular chromatic number
Xe(G) of G is the infimum of £ for all (k, d)-colorings of G. The circular chromatic

number is also known as the star-chromatic number in the literature (see [36, 42, 43]).



For any graph G, it is well-known that

w(G) < LG < (6) < Xe(6) < [xe(G)] = X(G). (+)

The parameters above for distance graphs are explored in this paper. For simplicity,
let w(Z, D), a(Z, D), x¢(Z,D), and x.(Z, D) denote the clique number, the indepen-
dence number, the fractional chromatic number, and the circular chromatic number
of G(Z, D), respectively.

2 Relationships between R(T') and x(Z, D)

This section shows that for any T-set, the asymptotic T-coloring ratio R(T") is equal
to the fractional chromatic number of the distance graph G(Z, D), if D = T — {0}.
Based upon this result, we give simpler and different proofs of some known facts
regarding R(7).

Theorem 1 For any finite T-set, if D =T — {0}, then R(T) = x¢(Z, D).

Proof. Suppose ¢ is an optimal T-coloring of K,,, where 0 = ¢(1) < ¢(2) < --- <

c(n) =o,. Let m = 1+rcrllag<d. For 1 <i<e¢(n)+m, let
S

I ={j€Z:j=1i+c(k) (mod c(n)+m) for some k with 1 <k <n}.

It is straightforward to verify that each I; is an independent set in G(Z, D), and that
every integer belongs to exactly n of the independent sets I; (1 < i < ¢(n) + m).
Define a mapping ¢ : Z(G(Z, D)) — [0, 1] as

(1) = L if I =1 for 1 <i<c(n)+m;
1 0, otherwise.

Then ¢ is a fractional coloring of G(Z, D). This implies that for any positive integer

n, xf(Z,D) < cm+m - Hence, we have

n

X7(Z,D) < lim ™ — Jim 9 = R(T).

n— oo n—oo T

To show x¢(Z,D) > R(T), let G, be the subgraph of G(Z,D) induced by
the vertex set {0,1,2,---,¢(n)}; ie., G, = G({0,1,2,---,¢(n)}, D). Then the set
of vertices {c(1),¢(2),---,c(n)} is a maximum independent set in G,,. So, for any

positive integer n, we have

Gn c(n
X#(Z, D) > xp(Gy) > WiGnll — clrit,
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This implies
X#(Z,D) > lim W — Jim %= = R(T).

— n—oo n n—oo N

Therefore, R(T') = x(Z, D). Q.E.D.

The theorem above provides new insights into the asymptotic T-coloring ratio
R(T). Some previous results concerning R(T') can be obtained from this approach.
For example, it is well-known that R(T") > 2, provided T' # {0} (see [1, 16, 30]). This
is straightforward when we consider fractional chromatic numbers, since the fractional
chromatic number of any non-trivial graph is at least 2. Moreover, for a non-trivial
graph G, x¢(G) = 2 if and only if G is bipartite. Since G(Z, D) is bipartite if and
only if D contains no even integers (assuming that ged(7") = 1), we have the following

result:

Corollary 2 For any T-set with ged(T) =1, R(T) = 2 if and only if T' contains only

odd integers except (.

Theorem 1 can also be applied to some other known results about R(7") which
are closely related to an earlier number theory problem, namely, sequences with miss-
ing differences. Given a T-set, a T'-sequence is an increasing sequence S of nonnegative
integers such that + —y € T for any z,y € S. Motzkin [29] proposed studying the
supremum p(7") of the asymptotic upper densities of these sequences S. Cantor and
Gordon [1] determined the exact values of p(7) when |T| = 2 and 3. Haralambis
[19] gave partial solutions when |T'| = 4 or 5. It is known that p(7") is equal to the
reciprocal of R(T') (see [16]). Therefore results on sequences with missing differences
can be applied to T-colorings. Cantor and Gordon [1] and Rabinowitz and Proulx
[30] proved that if T = {0, a, b}, ged(a,b) = 1, and a and b are of different parity,
then R(T') = % The original argument in proving the inequality R(7") > % in
[1] was quite complicated. However, applying some facts about fractional chromatic
number, one can obtain the following simpler proof. Since a and b are of opposite
parity, G(Z, D) with D = {a, b} contains an odd cycle Cyoyp. As xf(Copy1) =2+ £,
it follows that x;(Z, D) > x7(Cats) = 242 Thus, by Theorem 1, R(T) > 20,
Indeed, combining Theorem 1 with the fact that x;(H) < x¢(G) if H is a subgraph

of G, the following is obvious:

Corollary 3 If H is a subgraph of the distance graph G(Z, D), then x;(H) < R(T),
where T'= D U {0}.



3 Values of x/(Z, Dyx), X(Z, Dpi), and x.(Z, Dy, 1)

In this section, we first calculate x¢(Z, Dy, ), which, according to (x), is a lower
bound of x(Z, Dy, ). We then determine x(Z, D,, ) for all values of m and k. Using
this approach, circular chromatic numbers of G(Z, D,, ) for special values of m and
k are obtained as well.

The values of R(T') as T" = Dy, U {0} are given in [26]. Thus, the following
two results can also be obtained by using Theorem 1. Here we include methods of

calculating x¢(Z, D, ) directly.
Theorem 4 If 2k > m, then
w(Zv Dm,k) - Xf(Zv Dm,k) - Xc(Za Dm,k) = X(Za Dm,k) =k.

Proof. Since the set of vertices {1,2,---,k} forms a clique in G(Z, D, 1), k <
W(Z, Dy ).

By (%), it is sufficient to show x(Z, D, ) < k. Define a vertex-coloring f on Z
as f(i) = (i mod k). Then f is a proper coloring, since D,, ) contains no multiple of

3 Q.E.D.

Theorem 5 If 2k < m, then xf(Z, D) = m+2k+1'

Proof. Foranyiwith0 <i:<m+k, I;={j€Z:j—i=0ork (modm+k+1)}is
an independent set in G(Z, Dy, ). Furthermore, each integer is contained in exactly
two such independent sets. Define a mapping ¢ : Z(G(Z, D)) — [0, 1] as

oI) = %, if I =1for 0<i<m+k;
~ 1 0, otherwise.

It is easy to check that ¢ is a fractional coloring of G(Z, Dy, ). Thus, x(Z, D) <

m+k+1
—y

Since a({0,1,+--,m + k}, D) = 2 for 2k < m, by (), x;({0,1,---,m +
k}, D) > 2L Therefore, the proof is complete. Q.E.D.

Because x(G) is an integer, Theorem 5 and (x) imply the following:
Corollary 6 [26] If 2k < m then x(Z, Dy, ) > ["HE+1],

We are now in a position to give the complete solutions to x(Z, Dy, ) for all
values of m and k. This is accomplished in the next two results. As will be shown,
X(Z, Dy, ) is either [ZHEL] op [mAhtl] 4 g,
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Lemma 7 Suppose 2k < m. Write m + k+ 1 = 2"m’ and k = 2°k’, where r and
s are non-negative integers and m' and k' are odd integers. If 1 < r < s, then
X(Z, Dy ) > ML

Proof. Since 1 <r, m+ k+ 1 is even. Assume to the contrary that x(Z, Dy, ) <
mtktl = By Corollary 6, X(Z, Dini) = ™4+ Color G(Z, D) by using 7+l
colors.

For each integer 4, consider the subgraph of G(Z, D,, ) induced by the m+k+1
vertices {i,i+ 1,---,i 4+ m+ k}. This subgraph has independence number 2. Hence,
each of %’““ colors is used at most, and hence exactly, twice in this subgraph. Thus,
each color is used exactly twice in any consecutive m + k + 1 vertices. Consequently,
vertices ¢ and 7 +m + k + 1 have the same colors for all i € Z. Therefore, for each
i€ S:={0,1,---,m+ k}, the only possible vertices in S having the same color as i
are i + k and ¢ — k (mod m + k + 1).

Consider the circulant graph C(m + k + 1, k), with vertex set S and in which
vertex 7 is adjacent to vertex j if and only if j =i+ kor i —k (mod m+ k + 1). It
follows from the discussion in the preceding paragraph that two vertices x and y of
S have the same color only if zy is an edge of the circulant graph C'(m + k + 1, k).
Since the intersection of each color class with S contains exactly two vertices, the
coloring induces a perfect matching of C(m + k + 1, k). However, C(m + k + 1, k) is
the disjoint union of d cycles of length %’“H, where d = ged(m + k + 1, k). Since
C(m + k + 1, k) has a perfect matching, each cycle has an even length. This implies
that r > s, contrary to the assumption r < s. Q.E.D.

The next theorem determines the chromatic number x(Z, D,, ;) for all values of

m and k. Incidentally, it also shows that the converse of Lemma 7 is true.

Theorem 8 Suppose 2k < m. Write m+k+1=2"m’ and k = 2°k’, where r and s
are non-negative integers and m' and k' are odd integers. Then

m+k+1 ; :
_ s dfr>s
X(Z; Dy i) { [%’”21, otherwise.

Proof. It follows from Corollary 6 and Lemma 7 that if > s, then x(Z, Dy, 1) >
mtktlif v < s, then X(Z, Dpy) > [24242]. Therefore it suffices to show that
G(Z,Dp,y) is ™t colorable, if r > s; and G(Z,Dpy) is [™H42]-colorable, if
r < s. It is known that x(Z, D) = x(Z* U {0}, D) [14]. Therefore, it is sufficient
to find a proper coloring for the subgraph of G(Z, D,, ;) induced by all non-negative

integers.



We first decompose k into the sum of an odd number of integers, k = a; + as +
-+ -+ ay,, as follows:

Case 1. Forr > sor s =0, let p=Fk and a; =2° for 1 <j <p.

Case 2. Forr <s#0,let p=k—1anda; =1for 1 <j<panda,=2.

Next, partition the set Z into consecutive blocks of sizes a;, as, -, a, period-
ically. Then “pre-color” the blocks, alternating RED and BLUE. We call a vertex
RED (or BLUE) if it falls within a RED (or BLUE) block.

Define a coloring f on the vertices of all non-negative integers of G(Z, D, 1)
according to the following three rules:

(R1) f(i) =i,if0<i<k— L.

(R2) f(i) = f(i — k), if i is BLUE and i > k.

(R3) f(i) = the smallest non-negative integer that has not been used as a color
in the m vertices preceding i, if 72 is RED and ¢ > k.

To show that f is a proper coloring, we claim that for any vertex 7, f(i) # f(J)
for all j # ¢ — k with ¢ —m < 7 < i. It is easy to see that the claim is true
when (R1) or (R3) is performed. Suppose (R2) is executed, i.e., i is BLUE, i > k,
and f(i) = f(i — k). Since k is divided into an odd number of blocks, i — k is a
RED vertex. By (R1) or (R3), f(i — k) is different from any of the colors of the m
vertices preceding ¢ — k. Thus, it is sufficient to show that f(i) # f(j) for all j with
1—k<j<i.

If 7 is RED, by (R1) or (R3), f(j) # f(i — k) and so f(i) # f(j). If j is BLUE,
by (R1) or (R2), f(j) = f(j — k). One has i —k —m < j —k < i — k (because
2k <m), so f(i —k) # f(j — k). This implies f(i) # f(5).

To complete the proof of the theorem, it is sufficient to show that f is an
moh+21
2

mtk+1_
2

coloring if r > s; and f is an | -coloring if » < s. One can accomplish this
by counting the number of colors that have been used for the m vertices preceding
a RED vertex ¢ for which 7 > k. The first k& vertices need at most & colors. For the
remaining m — k vertices, only those RED vertices need new colors.

If r > s, then m — k + 1 is a multiple of 2571, Any consecutive 25! vertices
have 2° BLUE vertices and 2° RED ones, so there are exactly m_T]H RED vertices in
the remaining m — k vertices. Therefore, the total number of colors used in f is at
most k 4 M=l 4] = mAkEL

If r < s (with s = 0in Case 1 and s # 0 in Case 2), then there are at most
[mT_k} RED vertices in the remaining m —k vertices. Thus, the total number of colors
used in f is at most k+ [Z5E] + 1 = [24E427  This completes the proof of Theorem

8.



We now present the following two results concerning the circular chromatic
number of G(Z, D, ). The first one follows from (*) and Theorems 5 and 8.

Corollary 9 Suppose 2k < m. Write m +k+ 1 = 2"m’ and k = 2°K', where r
and s are non-negative integers and m' and k' are odd integers. If r > s, then
Xf(Za Dm,k;) - Xc(Za Dm,k) - X(Za Dm,k) - %k—i_l

Theorem 10 If 2k < m and k is relatively prime to m + k + 1, then x¢(Z, Dy, i) =
Xc(Zu Dm,k) - %]H—l

Proof. Since k is relatively prime to m + k + 1, there exists an integer n such that
nk =1 (mod m+k+1). Consider the mapping ¢ defined by ¢(i) = (in mod m+k+1)
foralli € Z. For any edge ij in G(Z, D,, 1), we shall prove that ||c(i)—c(J)||mirt+1 > 2.
Suppose to the contrary, that ||c(i) — c(j)||mers1 < 1; e, (i) —c(j) =0or 1 or —1
(mod m+k+1). Theni—j=0ork or —k (mod m+ k+ 1), which contradicts the
fact that ¢ is adjacent to j. Thus ¢ is an (m + k + 1, 2)-coloring of G(Z, D, x). This
along with Theorem 5 and (x) implies the theorem. Q.E.D.

Remarks. Many new results related to this topic have been obtained since the
submission of this paper. In [3], the circular chromatic numbers of all the graphs
G(Z, Dy, ;) are determined. The chromatic number, circular chromatic number and
fractional chromatic number of distance graphs with distance sets of the form Dy, ;. s =
{1,2,---,m} — {k, 2k, -- -, sk} have been studied in [8, 20, 27, 44]. (Accordingly, the
distance graphs discussed in this paper are G(Z, Dy, .1).) In [27], the chromatic num-
bers of all the graphs G(Z, D, x2) are determined. The same paper also determined
the fractional chromatic numbers of all the graphs G(Z, D,, 1. s). In [8], the following

was proved:
[(m+sk+1)/(s+ 1)] < xX(G(Z, Dpps)) < [(m+sk+1)/(s+1)] + 1.

Moreover, both the upper bound and the lower bound are attainable. Then in [20], the
chromatic numbers of all the graphs G(Z, D, . s) are completely determined. Finally
and most recently, [44] determines the circular chromatic numbers of all the graphs
G(Z, Dyi.s)-

Acknowledgements. The authors thank the referee for many useful suggestions.
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