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L. [15 points - 5 each] Find the supremum and infimum of each set if they 'exist. L
First draw a picture of the set or list several elements of the set to get an idea of what’s going on.

(a) X =1[5,10]U{3,-2,4}
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2. [10 points] Prove that
i ~P0 =8 —1
1r = —
noeo 1 + 2n? 2
To get any credit you must use the definition of limit as we did in class and in hw.
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3. [10 points - 5 each] True or False. Directions: If True, write "True” and give a short

proof. You must prove it to get credit. If False, write " False” and give an explicit example
to illustrate where the statement fails.

(a) Suppose that S is a non-empty subset of the real numbers and that S is bounded from
above. Let b be the supremum of S. Then b € .
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(b) Suppose that S is a non-empty subset of the real numbers that is bounded from above.
If z is an upper bound for S and z € S, then z is the supremum of S.
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4. [10 points] Suppose that (a,) and (b,) are sequences of real numbers. Suppose further

that lim a, = 0 and lim bn = B. Let « be a real number with o £ 0. Prove that
n—00 Jlim
n—00

To receive any credit for this problem
this result. No using theorems that we
That’s not allowed on this problem.
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you must use the e-N-definition of the limit to prove
proved in class or hw like lim(ay+b,) = lim a,, +1im b,.
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5. (10 points] PICK ONE PROBLEM BELOW. ONLY CHOOSE ONE. IF YOU DO BOTH
THEN I WILL GRADE (A).

A) Suppose that (a,) is a convergent sequence. Suppose that there exists M > 0 such that

an < M for all n. Prove that if lim a, = L then L < M. (You must prove this one using
n—o0

the definition of limit. No theorems from class or hw. )
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B) Let S be a non-empty subset of the real numbers such that S is boupded from below.
@anJ

Prove that inf(S) = —sup{—s|s € S}. +e
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5. [10 points] PICK ONE PROBLEM BELOW. ONLY CHOOSE ONE. IF YOU DO BOTH
THEN [ WILL GRADE (A).

A) Suppose that (ay) is a convergent sequence. Suppose that there exists M >.0 such tl@at
an < M for all n. Prove that if lim a, = L then L < M. (You must prove this one using
n—o0

the definition of limit. No theorems from class or hw.)
B) Let S be a non-empty subset of the real numbers such that S is bounded from below.
Prove that inf(S) = —sup{—s| s € S}.
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