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Do at least five of the following seven problems. All problems count

equally. If you attempt more than five, the best five will be used.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.

SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Fall 2022 #1. Consider the sequence defined by x0 = 1 and

xn+1 = 1 +
1

xn
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for all integers n ≥ 0.

(a) Show that the sequence satisfies

1 ≤ xn ≤ 2

for all non-negative integers n.

(b) Prove that (xn) has a convergent subsequence (xnk
). Hint: Use

your answer from (a).

SOLUTION:

(a) We prove this by induction. For the n = 0 case, we have

x0 = 1,

so the result obviously holds for n = 0. Assume now that the result

holds for n = k, so that
1

2
≤ 1

xk

≤ 1.

It follows that
3

2
≤ 1 +

1

xk

≤ 2,

from which we deduce that

3

2
≤ xk+1 ≤ 2.

Thus, the result holds for the n = k + 1 case. By the principle of

mathematical induction, it follows that the result holds for all n ≥ 0.

(b) Since the sequence is bounded, the Bolzano-Weierstrass theorem

implies that there exists a convergent subsequence xnk
.

Fall 2022 #2. Let (xn)
∞
n=1 be a sequence of real numbers.

(a) Define what it means for (xn)
∞
n=1 to be a “Cauchy sequence.”

(b) Use your answer from (a) to prove that if (xn)
∞
n=1 is a Cauchy

sequence, then {xn | n ∈ N} is bounded. (Here N denotes the set of

positive integers.)
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SOLUTIONS:

https://proofwiki.org/wiki/Cauchy_Sequence_is_Bounded/Real_

Numbers

Fall 2022 #3.

Let f : D → R be a continuous function on an open interval D. Prove

that the function f+ : D → R defined by

f+(x) = max{f(x), 0}

is continuous.

SOLUTIONS:

Solution #1:

https://www.reddit.com/r/learnmath/comments/s1eshq/show_that_

if_fg_are_continuous_then_maxfg_is/

Solution #2:

This is easy to see if we re-write the function f+ as follows:

f+(x) = max{f(x), 0} =
f(x) + |f(x)|

2
.

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.

https://proofwiki.org/wiki/Cauchy_Sequence_is_Bounded/Real_Numbers
https://proofwiki.org/wiki/Cauchy_Sequence_is_Bounded/Real_Numbers
https://www.reddit.com/r/learnmath/comments/s1eshq/show_that_if_fg_are_continuous_then_maxfg_is/
https://www.reddit.com/r/learnmath/comments/s1eshq/show_that_if_fg_are_continuous_then_maxfg_is/
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Fall 2022 #4. Let T : C([0, 1]) → R be the bounded linear transfor-

mation defined by

T (f) =

∫ 1

0

f(x) dx.

Here C([0, 1]) denotes the space of continuous functions from [0, 1] to

R. We endow C([0, 1]) with the L∞ norm defined by

||f ||∞ = sup{|f(x)| : 0 ≤ x ≤ 1}.

(a) Show that ∥T∥ ≤ 1.

(b) If g ∈ C([0, 1]) is defined by g(x) = 1, find |T (g)|, and use this

to compute ∥T∥.

SOLUTIONS:

(a) Let f ∈ C([0, 1]), and let M = ||f ||∞. Then

|T (f)| =
∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)| dx ≤
∫ 1

0

M dx = M = 1 · ||f ||∞.

Therefore ||T || ≤ 1.

(b) We have that

|T (g)| =
∣∣∣∣∫ 1

0

g(x) dx

∣∣∣∣ = ∣∣∣∣∫ 1

0

1 dx

∣∣∣∣ = 1 = 1 · ||g||∞.

This together with (a) implies that ||T || = 1.

Fall 2022 #5. Define

ℓ2(N;R) :=

{
(xn)

∞
n=1

∣∣∣∣∣ x1, x2, x3, · · · ∈ R and
∞∑
n=1

x2
n < ∞

}
.

In other words, ℓ2(N;R) is the set of all “square-summable” sequences

of real numbers. Recall that ℓ2(N;R) is an inner product space with
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the inner product

⟨(xn)
∞
n=1, (yn)

∞
n=1⟩ =

∞∑
n=1

xnyn.

(You may assume without proof that this defines an inner product.)

Define

rn =

2−(n+3)/4 if n is odd

2−(n+2)/4 if n is even

and sn = (−1)nrn. So

(rn)
∞
n=1 =

(
2−1, 2−1, 2−3/2, 2−3/2, 2−2, 2−2, 2−5/2, 2−5/2, . . .

)
, and

(sn)
∞
n=1 =

(
2−1,−2−1, 2−3/2,−2−3/2, 2−2,−2−2, 2−5/2,−2−5/2, . . .

)
.

(a) Prove that (rn)
∞
n=1 ∈ ℓ2(N;R) and (sn)

∞
n=1 ∈ ℓ2(N;R). (Recall the

geometric series formula: If x is a real number such that −1 < x < 1,

then
∑∞

n=1 x
n = x

1−x
.)

(b) Prove that {(rn)∞n=1, (sn)
∞
n=1} is an orthonormal family in ℓ2(N;R).

(c) Find real numbers a and b so that the quantity J(a, b) below is as

small as possible.

J(a, b) =
∞∑
n=1

(
2−n − arn − bsn

)2
.

SOLUTIONS:
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(a) We have that

∞∑
n=1

r2n = 2−2 + 2−2 + 2−3 + 2−3 + 2−4 + 2−4 + 2−5 + 2−5 + · · ·

= 2(2−2) + 2(2−3) + 2(2−4) + 2(2−5) + · · ·

= 2−1 + 2−2 + 2−3 + 2−4 + · · ·

=
∞∑
n=1

(1/2)n

= (1/2)/(1− 1/2) = 1 < ∞

by the geometric series formula. So (rn)
∞
n=1 ∈ ℓ2(N;R).

Similarly we find that
∞∑
n=1

s2n = 1.

So (sn)
∞
n=1 ∈ ℓ2(N;R).

(b) We have that

||(rn)∞n=1|| =
√

⟨(rn)∞n=1, (rn)
∞
n=1⟩ =

√√√√ ∞∑
n=1

r2n =
√
1 = 1

by the computation in (a). Similarly

||(sn)∞n=1||.

Finally,

⟨(rn)∞n=1, (sn)
∞
n=1⟩ =

∞∑
n=1

rnsn

= (2−1)2 − (2−1)2 + (2−3/2)2 − (2−3/2)2 + (2−2)2 − (2−2)2 + · · · = 0.

(c) Let tn = 2−n. Observe that

J(a, b) = ||(tn)∞n=1 − a(rn)
∞
n=1 − b(sn)

∞
n=1||2.
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(This is legitimate because
∑∞

n=1 2
−2n < ∞, which implies that (tn)

∞
n=1 ∈

ℓ2(N;R).)

So we are really trying to do is minimize the ℓ2 distance from (tn)
∞
n=1

to M , where

M = span {(rn)∞n=1, (sn)
∞
n=1}

This distance is minimized when we take a and b to be the coefficients

of the projection of (tn)
∞
n=1 onto M . Thus take:

a = ⟨(tn)∞n=1, (rn)
∞
n=1⟩

= 2−1(2−1) + 2−2(2−1) + 2−3(2−3/2) + 2−4(2−3/2) + 2−5(2−2) + 2−6(2−2) + · · ·

= [2−1(2−1) + 2−3(2−3/2) + 2−5(2−2) + · · · ] + [2−2(2−1) + 2−4(2−3/2) + 2−6(2−2) + · · · ]

= [2−2 + 2−9/2 + 2−7 + · · · ] + [2−3 + 2−11/2 + 2−8 + · · · ]

= 21/2
∞∑
n=1

(2−5/2)n + 2−1/2

∞∑
n=1

(2−5/2)n

= 21/2 · 2−5/2

1− 2−5/2
+ 2−1/2 · 2−5/2

1− 2−5/2
=

2−2 + 2−3

1− 2−5/2
=

2 + 1

23 − 21/2
=

3

8−
√
2
.

Similarly take:

b = ⟨(tn)∞n=1, (sn)
∞
n=1⟩

= 2−1(2−1)− 2−2(2−1) + 2−3(2−3/2)− 2−4(2−3/2) + 2−5(2−2)− 2−6(2−2) + · · ·

= [2−1(2−1) + 2−3(2−3/2) + 2−5(2−2) + · · · ]− [2−2(2−1) + 2−4(2−3/2) + 2−6(2−2) + · · · ]

= [2−2 + 2−9/2 + 2−7 + · · · ]− [2−3 + 2−11/2 + 2−8 + · · · ]

= 21/2
∞∑
n=1

(2−5/2)n − 2−1/2

∞∑
n=1

(2−5/2)n

= 21/2 · 2−5/2

1− 2−5/2
− 2−1/2 · 2−5/2

1− 2−5/2
=

2−2 − 2−3

1− 2−5/2
=

2− 1

23 − 21/2
=

1

8−
√
2

Fall 2022 #6. Let V be a normed vector space over F, where F may

be either the field of real numbers or the field of complex numbers. Let

A be a linear subspace of V . Let C be the set of all x ∈ V such that
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there is a sequence {xn}∞n=1 in A converging to x. (In other words, C

is the closure of A.) Prove that C is a linear subspace of V .

Proof. Note that C ⊂ V by definition of C.

First we show that 0 ∈ C. We know that 0 ∈ A because A is a linear

subspace of V . The constant sequence {0} converges to 0. Thus 0 ∈ C.

Next, let x, y ∈ C. We will show that x+y ∈ C. By definition of C, we

know that there are sequences {xn}∞n=1 and {yn}∞n=1 in A converging

to x and y, respectively. Because A is a linear subspace of V , we know

that xn+yn ∈ A for all n. The sequence {xn+yn}∞n=1 is then a sequence

in A converging to x+ y. Hence x+ y ∈ C.

Finally, let λ ∈ F and x ∈ C. By definition of C, we know that there is

a sequence {xn}∞n=1 in A converging to x. Because A is a linear subspace

of V , we know that λxn ∈ A for all n. The sequence {λxn}∞n=1 is then

a sequence in A converging to λx. Hence λx ∈ C.

We have shown that C ⊂ V , that C contains the zero vector, that C is

closed under addition, and that C is closed under scalar multiplication.

Therefore C is a linear subspace of V . □

Fall 2022 #7. Let f(x) = x(π − x) for x ∈ (0, π).

(a) Extend the function f to the interval (−π, π) such that it becomes

an odd function. Please write down the expression of the extended

function F (x) on (−π, π).

(b) We extend F (x) from Part (a) to be 2π-periodic on R. Find the

Fourier series for F (x) in the trigonometric form.

(c) Use the result of Part (b) to find the value of the infinite series

1− 1

33
+

1

53
− 1

73
+

1

93
− · · ·
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SOLUTIONS:

(a) What we want is F (x) = f(x) on (0, π), and F (−x) = −F (x) for

x ∈ (−π, π):

F (x) =

x(π − x) on [0, π)

x(π + x) on (−π, 0).

(b) Since F is odd, the trigonometric Fourier series is

F (x) ∼
∞∑
k=1

bk sin(kx), bk =
2

π

∫ π

0

F (t) sin(kt) dt.

(Different books use slightly different definitions for Fourier series, so

your answer may differ slightly by some constants. The answer to (c)

will work out the same no matter what, though.)

By careful calculations, we obtain

bk =
4

πk3
− 4

πk3
cos(kπ),

and thus,

bk =

0, if k = 2n,

8
π(2n−1)3

, if k = 2n− 1,

for n = 1, 2, 3, . . .

Therefore,

F (x) ∼ 8

π

∞∑
n=1

sin[(2n− 1)x]

(2n− 1)3
.

(c) Note that F is differentiable at π/2. Therefore the Fourier series

for F converges to F (π/2) at x = π/2.

If x = π/2, by Part (a), we have

F (π/2) =
π2

4
.
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On the other side, by Part (b), we have

F (π/2) =
8

π

(
1

13
− 1

33
+

1

53
− · · ·

)
.

Therefore,

1− 1

33
+

1

53
− 1

73
+

1

93
− · · · = π3

32
.


