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1. INTRODUCTION

A composition of n consists of an ordered sequence of positive integers whose

sum is n. A palindromic composition (or palindrome) is one for which the sequence

reads the same forwards and backwards. We derive results for the number of “+”

signs, summands, levels (a summand followed by itself), rises (a summand followed by

a larger one), and drops (a summand followed by a smaller one) for both compositions

and palindromes of n. This generalizes a paper by Alladi and Hoggatt [1], where

summands were restricted to be only 1s and 2s.

Some results by Alladi and Hoggatt can be generalized to compositions with

summands of all possible sizes, but the connections with the Fibonacci sequence are

specific to compositions with 1s and 2s. However, we will establish a connection to

the Jacobsthal sequence [8], which arises in many contexts: tilings of a 3 x n board

[7], meets between subsets of a lattice [3], and alternating sign matrices [4], to name

just a few. Alladi and Hoggatt also derived results about the number of times a
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particular summand occurs in all compositions and palindromes of n, respectively.

Generalizations of these results are given in [2].

In Section 2 we introduce the notation that will be used, methods to generate

compositions and palindromes, as well as some easy results on the total numbers

of compositions and palindromes, the numbers of “+” signs and the numbers of

summands for both compositions and palindromes. We also derive the number of

palindromes into i parts, which form an “enlarged” Pascal’s triangle.

Section 3 contains the harder and more interesting results on the numbers of

levels, rises and drops for compositions, as well as interesting connections between

these quantities. In Section 4 we derive the corresponding results for palindromes.

Unlike the case of compositions, we now have to distinguish between odd and even

n. The final section contains generating functions for all quantities of interest.

2. NOTATION AND GENERAL RESULTS

We start with some notation and general results. Let

Cn, Pn = the number of compositions and palindromes of n,
respectively

C+
n , P+

n = the number of “+” signs in all compositions and
palindromes of n, respectively

Cs
n, P s

n = the number of summands in all compositions and
palindromes of n, respectively

Cn(x) = the number of compositions of n ending in x
Cn(x, y) = the number of compositions of n ending in x + y
rn, ln, dn = the number of rises, levels, and drops in all compositions

of n, respectively

r̃n, l̃n, d̃n = the number of rises, levels, and drops in all palindromes
of n, respectively.

We now look at ways of creating compositions and palindromes of n. Compo-

sitions of n + 1 can be created from those of n by either appending ‘+1’ to the right
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end of the composition or by increasing the rightmost summand by 1. This process is

reversible and creates no duplicates, hence creates all compositions of n+1. To create

all palindromes of n, combine a middle summand of size m (with the same parity as

n, 0 ≤ m ≤ n) with a composition of n−m
2

on the left and its mirror image on the

right. Again, the process is reversible and creates no duplicates (see Lemma 2 of [2]).

We will refer to these two methods as the Composition Creation Method (CCM) and

the Palindrome Creation Method (PCM), respectively. Figure 1 illustrates the PCM.

6 7

1 4 1 1 5 1

2 2 2 2 3 2
1 1 2 1 1 1 1 3 1 1

3 3 3 1 3
1 2 2 1 1 2 1 2 1
2 1 1 2 2 1 1 1 2

1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1: Creating palindromes of n = 6 and n = 7

We can now state some basic results for the number of compositions, palin-

dromes, “+” signs and summands.

Theorem 1 1. Cn = 2n−1 for n ≥ 1, C0 := 1.

2. P2k = P2k+1 = 2k for k ≥ 0.

3. C+
n = (n − 1)2n−2 for n ≥ 1, C+

0 := 0.

4. P+
2k+1 = k2k for k ≥ 0, P+

2k = (2k − 1)2k−1 for k ≥ 1, P+
0 := 0.

5. Cs
n = (n + 1)2n−2, for n ≥ 1, Cs

0 := 1.
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6. P s
2k+1 = (k + 1)2k for k ≥ 0, P s

2k = (2k + 1)2k−1 for k ≥ 1, P s
0 := 1.

Proof: 1. The number of compositions of n into i parts is
(

n−1
i−1

)
(see Section

1.4 in [5]). Thus, for n ≥ 1,

Cn =
n∑

i=1

(
n − 1

i − 1

)
= 2n−1.

2. Using the PCM as illustrated in Figure 1, it is easy to see that

P2k = P2k+1 =
k∑

i=0

Ci = 1 + (1 + 2 + · · · + 2k−1) = 2k.

3. A composition of n with i summands has i − 1 “+” signs. Thus, the number of

“+” signs can be obtained by summing according to the number of summands in the

composition:

C+
n =

n∑
i=1

(i − 1) ·
(
n − 1

i − 1

)
=

n∑
i=2

(i − 1) · (n − 1)!

(i − 1)!(n − i)!

= (n − 1)
n∑

i=2

(
n − 2

i − 2

)
= (n − 1) · 2n−2. (1)

4. The number of “+” signs in a palindrome of 2k+1 is twice the number of “+” signs

in the associated composition, plus two “+” signs connecting the two compositions

with the middle summand.

P+
2k+1 =

k∑
i=1

(2Ci + 2C+
i ) =

k∑
i=1

(2 · 2i−1 + 2(i − 1)2i−2)

=
k∑

i=1

(i + 1)2i−1 = k2k,

where the last equality is easily proved by induction. For palindromes of 2k, the same

reasoning applies, except that there is only one “+” sign when a composition of k is

combined with its mirror image. Thus,

P+
2k =

k−1∑
i=1

(2Ci + 2C+
i ) + (Ck + 2C+

k ) =
k∑

i=1

(2Ci + 2C+
i ) − Ck

= k2k − 2k−1 = (2k − 1)2k−1.
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5. & 6. The number of summands in a composition or palindrome is one more than

the number of “+” signs, and the results follows by substituting the previous results

into CS
n = C+

n + Cn and P S
n = P+

n + Pn. �

Part 4 of Theorem 4 could have been proved similarly to part 1, using the

number of palindromes of n into i parts, denoted by P i
n. These numbers exhibit an

interesting pattern which will be proved in Lemma 2.
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Figure 2: Palindromes with i parts

Lemma 2 P 2j
2k−1 = 0 and P 2j−1

2k−1 = P 2j−1
2k = P 2j

2k =
(

k−1
j−1

)
for j = 1, ..., k, k ≥ 1.

Proof: The first equality follows from the fact that a palindrome of an odd

number n has to have an odd number of summands. For the other cases we will

interpret the palindrome as a tiling where cuts are placed to create the parts. Since

we want to create a palindrome, we look only at one of the two halves of the tiling

and finish the other half as the mirror image. If n = 2k− 1, to create 2j − 1 parts we

select (2j−1)−1
2

= j− 1 positions out of the possible (2k−1)−1
2

= k− 1 cutting positions.
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If n = 2k, then we need to distinguish between palindromes having an odd or even

number of summands. If the number of summands is 2j − 1, then there cannot be a

cut directly in the middle, so only 2k−2
2

= k− 1 cutting positions are available, out of

which we select (2j−1)−1
2

= j − 1. If the number of summands is 2j, then the number

of palindromes corresponds to the number of compositions of k, with half the number

of summands (=j), which equals
(

k−1
j−1

)
�

3. LEVELS, RISES AND DROPS FOR COMPOSITIONS

We now turn our attention to the harder and more interesting results for the

numbers of levels, rises and drops in all compositions of n.

Theorem 3 1. ln = 1
36

((3n + 1)2n + 8(−1)n) for n ≥ 1 and l0 = 0.

2. rn = dn = 1
9
((3n − 5)2n−2 − (−1)n) for n ≥ 3 and r0 = r1 = r2 = 0.

Proof: 1. In order to obtain a recursion for the number of levels in the

compositions of n, we look at the right end of the compositions, as this is where the

CCM creates changes. Applying the CCM, the levels in the compositions of n + 1

are twice those in the compositions of n, modified by any changes in the number of

levels that occur at the right end. If a 1 is added, an additional level is created in all

the compositions of n that end in 1, i.e., a total of Cn(1) = 1
2
Cn−1 additional levels.

If the rightmost summand is increased by 1, one level is lost if the composition of

n ends in x + x, and one additional level is created if the composition of n ends in

x + (x − 1). Thus,

l2k+1 = 2l2k +
1

2
C2k −

k∑
x=1

C2k(x, x) +
k∑

x=2

C2k(x, x − 1)
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= 2l2k + 22k−2 −
k∑

x=1

C2k−2x +
k∑

x=2

C2k−(2x−1)

= 2l2k + 22k−2 − (22k−3 + 22k−5 + · · · + 21 + 1) + (22k−4 + · · · + 1)

= 2l2k + (22k−2 − 22k−3 + 22k−4 − · · · − 2 + 1) − 1

= 2l2k +
22k−1 − 2

3
,

while

l2k = 2l2k−1 +
1

2
C2k−1 −

k−1∑
x=1

C2k−1(x, x) +
k∑

x=2

C2k−1(x, x − 1)

= 2l2k−1 + 22k−3 − (22k−4 + 22k−6 + · · · + 22 + 1) + (22k−5 + · · · + 21 + 1)

= 2l2k−1 + (22k−3 − 22k−4 + 22k−5 − · · · + 2 − 1) + 1

= 2l2k−1 +
22k−2 + 2

3
.

Altogether, for all n ≥ 2,

ln = 2ln−1 +
2n−2+2(−1)n

3 . (2)

The homogeneous and particular solutions, l(h)
n and l(p)

n , respectively, are given by

l(h)
n = c · 2n and l(p)

n = A · (−1)n + B · n2n.

Substituting l(p)
n into Eq. (2) and comparing the coefficients for powers of 2 and -1,

respectively, yields A = 2
9

and B = 1
12

. Substituting ln = l(h)
n + l(p)

n = c ·2n + 2
9(−1)n +

1
12 · n · 2n into Eq. (2) and using the initial condition l2 = 1 yields c = 1

36
, giving the

equation for ln for n ≥ 3. (Actually, the formula also holds for n ≥ 1).

2. It is easy to see that rn = dn, since for each nonpalindromic composition there

is one which has the summands in reverse order. For palindromic compositions, the

symmetry matches each rise in the first half with a drop in the second half and vice

versa. Since C+
n = rn + ln + dn, it follows that rn = C+

n −ln
2

. �
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Table 1 shows values for the quantities of interest. In Theorem 4 we will establish

the patterns suggested in this table.

n 1 2 3 4 5 6 7 8 9 10 11 12
C+

n 0 1 4 12 32 80 192 448 1024 2304 5120 11264
ln 0 1 2 6 14 34 78 178 398 882 1934 4210

rn = dn 0 0 1 3 9 23 57 135 313 711 1593 3527

Table 1: Values for C+
n , ln and rn

Theorem 4 1. rn+1 = rn + ln and more generally, rn =
∑n−1

i=2 li for n ≥ 3.

2. C+
n = rn + rn+1.

3. C+
n = 4 · (ln−1 + ln−2) = 4 · (rn − rn−2).

4. ln − rn = an−1, where an is the nth term of the Jacobsthal sequence.

Proof: 1. The first equation follows by substituting the formulas of Theorem 3

for rn and ln and collecting terms. The general formula follows by induction.

2. This follows from part 1, since C+
n = rn + ln + dn and rn = dn.

3. The first equality follows by substituting the formula in Theorem 3 for ln−1 and

ln−2. The second equality follows from part 1.

4. The sequence of values for fn = ln − rn is given by 1, 1, 3, 5, 11, 21, 43, .... This

sequence satisfies several recurrence relations, for example fn = 2fn−1 + (−1)n or

fn = 2n − fn−1, both of which can be verified by substituting the formulas given in

Theorem 3. These recursions define the Jacobsthal sequence (A001045 in [8]), and

comparison of the initial values shows that fn = an−1. �
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4. LEVELS, RISES AND DROPS FOR PALINDROMES

We now look at the numbers of levels, rises and drops for palindromes. Unlike

the case for compositions, there is no single formula for the number of levels, rises

and drops, respectively. Here we have to distinguish between odd and even values of

n, as well as look at the remainder of k when divided by 3.

Theorem 5 For k ≥ 1,

1. l̃2k = 2
9
(−1)k + 2k

(
53
126

+ k
3

)
+




6
7

k ≡ 0 mod (3)
−2
7

k ≡ 1 mod (3)
−4
7

k ≡ 2 mod (3)

l̃2k+1 = 2
9
(−1)k + 2k

(
22
63

+ k
3

)
+




−4
7

k ≡ 0 mod (3)
6
7

k ≡ 1 mod (3)
−2
7

k ≡ 2 mod (3)

2. r̃2k = d̃2k = −1
9
(−1)k − 2k−1

(
58
63

− 2k
3

)
+




−3
7

k ≡ 0 mod (3)
1
7

k ≡ 1 mod (3)
2
7

k ≡ 2 mod (3)

r̃2k+1 = d̃2k+1 = −1
9
(−1)k − 2k−1

(
22
63

− 2k
3

)
+




2
7

k ≡ 0 mod (3)
−3
7

k ≡ 1 mod (3)
1
7

k ≡ 2 mod (3)

Proof: We use the PCM, where a middle summand m = 2l or m = 2l + 1

(l ≥ 0) is combined with a composition of k − l and its mirror image, to create a

palindrome of n = 2k or n = 2k + 1, respectively. The number of levels in the

palindrome is twice the number of levels of the composition, plus any additional

levels created when the compositions are joined with the middle summand.

We will first look at the case where n (and thus m) is even. If l = m = 0,

a composition of k is joined with its mirror image, and we get only one additional

level. If l > 0, then we get two additional levels for a composition ending in m, for

m = 2l ≤ k − l. Thus,

l̃2k = 2 ·
k∑

l=0

lk−l + Ck + 2 ·
�k/3�∑
l=1

Ck−l(2l) = s1 + 2k−1 + s2. (3)
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Since l0 = l1 = 0, the first summand reduces to

s1 =
1

18
·

k∑
i=2

{
(3i + 1)2i + 8(−1)i

}
=

2

9

k∑
i=2

2i−2 +
1

3

k∑
i=2

i · 2i−1 +
4

9

k∑
i=0

(−1)i

=
2

9
· (2k−1 − 1) +

1

3

(
d

dx

k∑
i=2

xi

)∣∣∣∣∣
x = 2

+
2

9
((−1)k + 1)

=
1

9
2k +

1

3

{
(k + 1)2k − 2k+1

}
+

2

9
(−1)k =

2

9
(−1)k +

(
k

3
− 2

9

)
2k. (4)

To compute s2, note that Cn(i) = Cn−1(i − 1) = ... = Cn−i+1(1) = 1
2
Cn−i+1 = 2n−i−1

for i < n and Cn(n) = 1. The latter case only occurs when k = 3l. Let k := 3j + r,

where r = 1, 2, 3. (This somewhat unconventional definition allows for a unified

proof.) Thus, with IA denoting the indicator function of A,

s2 = 2 ·
�k/3�∑
l=1

Ck−l(2l) = 2 ·
j∑

l=1

23j+r−l−2l−1 + 2 · I{r=3}

= 2r ·
j∑

l=1

(
23
)j−l

+ 2 · I{r=3} = 2r


(23)

j − 1

7


+ 2 · I{r=3}

=
2k − 2r

7
+ 2 · I{r=3} =

{
2k+6

7
k ≡ 0 mod (3)

2k−2r

7
k ≡ r mod (3), for r = 1, 2.

(5)

Combining Equations (3), (4) and (5) and simplifying gives the result for l̃2k.

For n = 2k + 1, we make a similar argument. Again, each palindrome has twice

the number of levels of the associated composition, and we get two additional levels

whenever the composition ends in m, for m = 2l + 1 ≤ k − l. Thus,

l̃2k+1 = 2 ·
k∑

l=0

lk−l + 2 ·
�(k−1)/3�∑

l=0

Ck−l(2l + 1) =: s1 + s3.

With an argument similar to that for s2,we derive

s3 =




2k+2−4
7

k ≡ 0 mod (3)
2k+2+6

7
k ≡ 1 mod (3)

2k+2−2
7

k ≡ 2 mod (3)

(6)

Combining Equations (4) and (6) and simplifying gives the result for l̃2k+1. Finally,

the results for r̃n and d̃n follow from the fact that r̃n = d̃n =
P+

n −l̃n
2 . �
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5. GENERATING FUNCTIONS

Let Gan(x) =
∑∞

k=0 akx
k be the generating function of the sequence {an}∞0 . We

will give the generating functions for all the quantities of interest.

Theorem 6 1. GCn(x) = 1−x
1−2x

and GPn(x) = 1+x
1−2x2 .

2. GC+
n
(x) = x2

(1−2x)2
and GP+

n
(x) = x2+2x3+2x4

(1−2x2)2
.

3. GCs
n
(x) = 1−3x+3x2

(1−2x)2
and GPs

n
(x) = 1+x−x2+2x4

(1−2x2)2
.

4. Gln(x) = x2(1−x)
(1+x)(1−2x)2

and Grn(x) = Gdn(x) = x3

(1+x)(1−2x)2
.

5. Gl̃n
(x) = x2(1+3x+4x2+x3−x4−4x5−6x6)

(1+x2)(1+x+x2)(1−2x2)2
and

Gr̃n(x) = Gd̃n
(x) = x4(1+3x+4x2+4x3+4x4)

(1+x2)(1+x+x2)(1−2x2)2
.

Proof: 1. & 2. The generating functions for {Cn}∞0 , {Pn}∞0 and {C+
n }∞0

are straightforward using the definition and the formulas of Theorem 1. We derive

GP+
n

(x), as it needs to take into account the two different formulas for odd and even

n. From Theorem 1, we get

GP+
n

(x) =
∞∑

k=1

P+
2k−1x

2k−1 +
∞∑

k=1

P+
2kx

2k

=
∞∑

k=1

(k − 1)2k−1x2k−1 +
∞∑

k=1

(2k − 1)2k−1x2k (7)

Separating each sum in Eq. (7) into terms with and without a factor of k, and recom-

bining like terms across sums leads to

GP+
n
(x) = 1+2x

4

∞∑
k=1

4xk(2x2)k−1 − (x + x2)
∞∑

k=1

(2x2)k−1

= 1+2x
4 · d

dx

( 1
1−2x2

)
− x+x2

1−2x2 = x2+2x3+2x4

(1−2x2)2 .

3. Since Cs
n = Cn + C+

n , GCs
n
(x) = GCn(x) + GC+

n
(x); likewise for GPs

n
(x).
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4. The generating function for ln can be easily computed using Mathematica or Maple,

using either the recursive or the explicit description. The relevant Mathematica

commands are

<<DiscreteMath‘RSolve‘

GeneratingFunction[{a[n+1]==2a[n]+(2/3)*2^(n-2)+(-2/3)*(-1)^(n-2),
a[0]==0,a[1]==0},a[n],n,z][[1,1]]

PowerSum[((1/36) + (n/12))*2^n + (2/9)*(-1)^n,{z,n,1}]

Furthermore, Grn(x) = Gdn(x) = 1
2

(
GC+

n
(x) − Gln(x)

)
, since rn = dn = C+

n −ln
2

.

5. In this case we have six different formulas for l̃n, depending on the remainder of

n with respect to 6. Let Gi(x) denote the generating function of
{
l̃6k+i

}∞
k=0

. Then,

using the definition of the generating function and separating the sum according to

the remainder (similar to the computation in part 2), we get

Gl̃n
(x) = G0(x

6) + x · G1(x
6) + x2 · G2(x

6) + · · · + x5 · G5(x
6).

The functions Gi(x) and the resulting generating function Gl̃n
(x) are derived using

the following Mathematica commands:

<<DiscreteMath‘RSolve‘

g0[z_]=PowerSum[(1/126)((126(n)+53)* 2^(3n)+108+28(-1)^(n)),{z,n,1}]

g1[z_]=PowerSum[(1/63)((63n+22)* 2^(3n)-36+14(-1)^n),{z,n,1}]

g2[z_]=PowerSum[(1/63)((126n+95)* 2^(3n)-18-14(-1)^n),{z,n,0}]

g3[z_]=PowerSum[(1/63)((126n+86)* 2^(3n)+54-14(-1)^n),{z,n,0}]

g4[z_]=PowerSum[(1/63)((252n+274)* 2^(3n)-36+14(-1)^n),{z,n,0}]

g5[z_]=PowerSum[(1/63)((252n+256)* 2^(3n)-18+14(-1)^n),{z,n,0}]

genfun[z]:= g0[z^6]+z g1[z^6]+z^2 g2[z^6]+z^3 g3[z^6]+z^4 g4[z^6]+z^5 g5[z^6]

Finally, Gr̃n(x) = Gd̃n
(x) = 1

2

(
GP+

n
(x) − Gl̃n

(x)
)
, since r̃n = d̃n = P+

n −l̃n
2

. �
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