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Abstract 
For a given finite set of tiles and a strip of fixed height we describe how to 
obtain the associated (finite directed) graph that encodes the structure of the 
set of all possible tilings.  We then consider possible constraints on such 
graphs and introduce and give some preliminary results on the reverse ques-
tion: Given a graph, does there exist a set of tiles and a fixed height such 
that the corresponding set of tilings would generate the given graph?   
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1. Introduction 
The enumeration and classification of tilings has a long history.  In 1953 
Solomon Golomb introduced polyominoes, connected figures formed by 
squares placed so that each square shares a side with at least one other 
square (see [1], [2], and [3]).  In 1965 Golomb’s book on the subject, 
Polyominoes: Puzzles, Patterns, Problems and Packings [4], was published 
and contained many problems associated with polyominoes.  One type of 
problem that has generated much research is the question of tiling rectan-
gles with polyominoes.  The basic question is: Given a set of polyominoes, 
in how many ways can one tile a KxN rectangle with those tiles?  The easi-
est example is: In how many ways can one tile a 2xN rectangle with domi-
noes?  The answer to the latter question is given by FN, the Nth Fibonacci 
number.  In a previous paper [6] the authors give formulae for the number 
of tilings of 2xN and 3xN rectangles with the complete set of trominoes 
(polyominoes of area three). Here, we are interested in representing the 
“structure” of these tilings. 



2.  Basic definitions and examples 
Consider a fixed set of tiles T, where tiles are not considered equivalent 
under rotation.  For example, if we want to tile a rectangle with dominoes 
we would distinguish the horizontal and vertical orientations. For trominoes 
there are two basic types, namely the straight (1x3) S and the L-shaped tile 
created by removing a 1x1 tile from a  2x2 square.  However, the complete 
set of tromino tiles would have six elements (the two orientations of the S, 
and the four orientations of the L). Now consider a fixed number K for the 
height of the rectangle.  We can put down tiles one by one in lexicographic 
order (top to bottom, then left to right).  This means that we can unambigu-
ously describe a tiling as an ordered sequence of tiles.  This approach has 
been used in many different settings: Merlini et al. [7] used it to generate a 
grammar and from it the generating function for the number of tilings; Stan-
ley [8] refers to this approach as a transfer-matrix method, and Graham et 
al. [5] use this technique as an example of a finite state machine.  These are 
all powerful and general tools but they can also be a bit opaque.  We would 
like to focus on the graph representation of the tiling to easily visualize its 
structure.  Namely, each time a tile is placed down in lexicographic order 
there are a finite number of choices for the next tile.  Sometimes there are 
no allowable choices, i.e., ways to place a tile in such a way that it does not 
overlap with existing tiles in the sequence.  Notice that the only information 
that impacts whether a tile can be added is the end configuration or end pat-
tern, which consists of those squares that have free edges. A tile has a free 
edge if there is no tile horizontally adjacent to one or more of the squares 
covered by the tile.  Since there are finitely many tiles, there are finitely 
many end configurations. Each of these configurations becomes a node in 
the tiling graph. Two vertices u and v are connected by a directed edge if 
there is a tile that can be placed in lexicographic order such that the configu-
ration u is transformed into the configuration v. The tiling graph encodes all 
the information on how tiles can be sequentially fit together in a rectangular 
strip of height K.  
 
Example:  Let T be the set of dominoes, with H denoting the horizontal 
orientation, and V denoting the vertical orientation of the domino tile.  
What are the different ways to tile the 2xN strips with dominoes? Figure 1 
shows the possible configurations and the transformations between them. 
(We will explain the numeric encodings of the end configurations below.) 

 

 
   00                  add V     00 



 
   00         add  H      20 

 
   20          add H      00 
 

Figure 1. Domino tilings 
  

Note that there are only two possible configurations, 00 and 20. The correspond-
ing tiling graph is shown in Figure 2, where the edges are labeled according to 
the tile that transforms one configuration into the other.  
 
 
 
 
 
 
 

Figure 2. Tiling graph for domino tilings 
  

 
We will now describe the encoding of the end configurations, which are impor-
tant because they determine the restrictions on the tiles that can be added at the 
next step in the sequence (if any).  For a rectangle of fixed height K, we will 
assign K numbers to uniquely describe the end pattern.  First we identify the 
(vertical) free edge furthest to the left (assuming that the lexicographic ordering 
of the tiles is proceeding from left to right).  This free edge furthest to the left 
will serve as the “origin” or zero level.  We assign the binary values 

! 

2
m  to the 

m-th cell to the right of the zero level, and then add the values for the occupied 
cells to the right of the zero level in each row. The resulting K values uniquely 
describe the end configuration, even if there are uncovered cells between the 
zero level and the free edge. This can occur for example when tiling with tromi-
noes, and is shown in the tiling on the right in Figure 3. We will use the K values 
for each configuration as the label for the corresponding vertex in the tiling 
graph. The tiling on the left has label 701, and the one on the right has label 320.   
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Figure 3. The end configurations 701 and 320 
 
Note that this encoding gives an upper bound on the number of end patterns.  If 
d is the maximal dimension of the tiles in T and K is the height of the rectangu-
lar strip, then the number of configurations is bounded above by 

! 

2
d
K

. Of course 
this bound generally far exceeds the actual number of end configurations since 
many of the patterns cannot arise. 
 
The algorithm above for describing the end patterns works for all types of til-
ings. However, many examples have relatively simple tiles, and it is often easier 
to see the structure by modifying the algorithm slightly.  Instead of using binary 
encoding, one can instead count the squares to the right of the zero level.  Then 
the tiling on the left of Figure 3 would be encoded by 301, rather than by 701. 
For the tiling on the right, we need to make a specific rule to account for the 
exceptions that occur when there are empty cells between the zero level and the 
free edge on the right, so that such a configuration can be distinguished from the 
one where the tile covers all cells between the zero level and the free edge. In-
stead of labeling the tiling on the right in Figure 3 by 220, we will label it as 240 
in the tiling graphs for the domino tilings. We will use the simplified code in the 
tiling graphs shown in Figures 4 and 5.  
 
3. Why look at tiling graphs? 
The tiling graph is a representation of the structure of the tiling sequence of a 
particular set of tiles and a rectangular strip.  As such it encodes the information 
we need to answer questions such as “How many ways can one tile a 2xN strip 
with trominoes?”  Tools and techniques such as finite state machines and regular 
grammars can encode the same information and provide answers to the same 
questions, but the tiling graph gives a visual representation, and we can use the 
machinery and techniques of graph theory. 
 
Example:  Figure 4 shows the tiling graph for rectangular strips of height 3 tiled 
by trominoes.  The edges are labeled with the shape of tromino that transforms 
the end states.  Recall that tiles are not allowed to be rotated, so each orientation 
can induce different edges in the graph. Figure 5 shows a simplified version of 



the same tiling graph, where the edge labels have been replaced by dashed lines 
for the straight pieces and solid lines for the L pieces. 
 

    
 

Figure 4. The tiling graph for the tromino tilings of size 3xN 
 

 
Figure 5. Simplified tiling graph for the  tromino tilings of size 3xN 



 
In this example, by using the tiling graph representation we can “see” some of 
the structure of the set of tilings.  The horizontal straight pieces form three sets 
of triangles in the graph.  The vertical straight piece only shows up as a loop 
based at the “origin”.  Except for the 2-cycle containing vertex “240”, each of 
the four orientations appears exactly twice in the graph. 
 
One immediate observation is that there is a one-to-one correspondence between 
loops in the tiling graph that start and end at “0…0” (the end that has all free 
edges at the zero level) and complete tilings.  This allows for a procedure to 
enumerate tilings based on the tiling graph since one can count the number of 
paths from one vertex to another by looking at appropriate entries in powers of 
the adjacency matrix. 
 
Example:  Figure 6 shows the tiling graph for rectangular stips of height two 
tiled with trominoes.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Tiling graph for the tromino tilings of size 2xN 

 
 
For this tiling graph, the adjacency matrix is given by (with vertices listed in the 
order 00, 30, 01, 10, 02, and 20): 
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If we just want to count paths and are not interested in the types of tiles, then we 
can replace S and L in the adjacency matrix with 1s. Then the (1,1) entry of the 
m-th power of this matrix will give the number of tilings that contain exactly m 
tiles. However, we can get much more information by looking at the sequence of 
polynomials 

  

! 

pn L,S( ) = A
n( )
1,1

.  Note that these polynomials count the labeled 

paths, so that the “value” of a path is the product of the labels. Here are the first 
few polynomials.  

! 

p2 = 2L
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2
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Since the area of all tiles is three, the polynomials for odd values of n are all 
zero, and pn gives us information about tilings of the 

! 

2" 3n 2( )  rectangle. We 
obtain that there are two tilings containing exactly two L tiles, and one tiling 
consisting of exactly two S tiles. Also, there are 20 tilings of the 2x9 rectangle 
with exactly four L tiles and two S tiles. 
 
Adding the coefficients in the polynomial pn gives the total number of tilings 
that consist of exactly n tiles. Thus, there are a total of 41 tilings of the 2x9 rec-
tangle. Adding the coefficients multiplied by the power of the variable gives the 
number of occurrences of a specific type of tile in all the tilings of a given size, 
where we do not distinguish between the orientations. (If that level of detail is 
desired, then the values in the adjacency matrix can be labeled L1, L2, L3, L4, S1, 
and S2.)  
 
Let 

! 

T (2,3n)  denote the number of tromino tilings of the 

! 

2" 3n( ) rectangle, 

! 

TS (2,3n)and 

! 

TL (2,3n)  the number of S and L tiles in all tromino tilings of the 

! 

2" 3n( ) rectangle, respectively, and  let 

! 

pn L,S( ) = cn,kL
k
S
n"k

k=0

n

# . From the 

discussion above we can obtain the results given in Theorems 3.1 and 3.2 of [6], 
albeit not in explicit form. 
 
 
Theorem 1.  

1) 

! 

T (2,3n) = p2n (1,1) . 

2) 

! 

TS (2,3n) = c2n,k " (2n # k)

k=0

2n

$   and   

! 

TL (2,3n) = c2n,k " k

k=0

2n

# . 

 



4. Which graphs are tiling graphs? 
From the discussion in Section 2 it is clear that we can create a tiling graph for 
each set of tiles T and height K of the rectangular strip (even though it becomes 
hard to do by hand if the number of tiles and the height of the rectangle become 
larger). Thus it is natural to ask the following questions: 

1.  Can any graph be a tiling graph? 
2. What are the necessary and/or sufficient properties for a graph to be a til-

ing graph? 
3.  If a graph is a tiling graph, can we determine the set of tiles T and the 

height K of the rectangular strip that has this tiling graph? 
4.  Is the set of tiles unique up to some kind of equivalence? More specifi-

cally, is it possible to have two sets of tiles generate the same tiling 
graph, but the two sets of tiles cannot be put in one-to-one correspon-
dence in any natural way? 

 
We have obtained a few preliminary results with regard to Question 2.  

 
Theorem 2.  A tiling graph must be connected and there must be a special ver-
tex such that every other vertex in the graph lies on a circuit that contains the 
special vertex (the 00…00 vertex). 
 
Proof: It is rather obvious that the tiling graph must be connected, as an isolated 
vertex would correspond to an end configuration that can never be created, and 
can also not create another end configuration. The same argument applies to a 
graph that has more than one component. To prove existence of a special vertex, 
note that a proper tiling must have a vertical edge across the height of the strip, 
both at the beginning and at the end. Thus every proper tiling corresponds to a 
path from a vertex representing the straight edge to itself. Since every possible 
configuration is contained in some tiling, each vertex must be on a circuit that 
contains also the special vertex.                                                                           

 
 

We can also answer Question 3 for some special types of graphs. 
 
Theorem 3. The (directed) cycle 

! 

Cn  and the complete (directed) graph 

! 

K
n
 on n 

vertices can be obtained as tiling graphs. 
 
Proof: We will tile strips of height n. For both 

! 

Cn  and 

! 

K
n
, there are exactly n 

end configurations, shown in Figure 7. We will label them as 0, 1, 2, … n-1 for 
simplicity of notation.  
 



 
Figure 7. End configurations 

 
For 

! 

Cn , where edges are of the form (i, i+1), the set of tiles T consists of a sin-
gle tile, the 1x1 square. For 

! 

K
n
, we will need a larger set of tiles. Let 

! 

V
k
 denote 

the vertically oriented 1xk tile.  Let 

! 

Sk, j  denote the “S”-shaped tile formed by 
taking a 3xn rectangle and removing 

! 

V
k
 from the upper left corner and 

! 

Vn" j  
from the lower right corner. Figure 8 shows some of these tiles for n = 5. 
 

 
  Figure 8.  The tiles 

! 

S1,4 ,

! 

S3,1 , and 

! 

S4,2  
 
 
Let T = 

  

! 

V1,V2KVn"1{ }# Sk, j 1$ k $ n "1 and 1$ j $ k "1{ } . This set of tiles 
creates the following edges: 

- From vertex 0 to any non-zero vertex p: the edge corresponds to adding 

! 

Vp ; 
- From any non-zero vertex p to vertex 0: the edge corresponds to adding 

! 

Vn" p ; 
- For  vertices 

! 

p > 0  and 

! 

q > 0  with 

! 

p < q : the edge from vertex p to vertex 
q corresponds to adding 

! 

Vq" p ;  the edge from vertex q to vertex p corre-
sponds to adding 

! 

Sq,p . 
 
Thus for any vertices p and q there is a unique edge from p to q, hence the tiling 
graph is the complete di-graph on n vertices.                             
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