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1 Introduction

A signed permutation is a permutation, written in one-line notation, in which each entry may or
may not have a bar over it. Equivalently, each entry of a signed permutation carries either a plus
(nonbarred) or a minus (barred). Let Bn denote the set of signed permutations of length n. Given
π ∈ Bn, we can draw a diagram of π in an n × n grid: for each i, put a dot in row |π(i)| of column
i (counting from the bottom and from the left, respectively); �ll in the dot if π(i) is nonbarred and
leave the dot empty if π(i) is barred.

The symmetry group of the square, D4, acts on these diagrams and thus on the elements of Bn. We
can also apply a bar operation: given π ∈ Bn, keep the diagram's dots in the same places but �ip the
sign of each dot. We write S to denote the group generated by D4 and the bar operation. We observe
that S is isomorphic to D4⊕Z2. Within S, we use e to denote the identity element, we use R90, R180,
and R270 to denote rotations by 90, 180, and 270 degrees respectively, we use D to denote a re�ection
across the �/� diagonal (the D diagonal), and we use D′ to denote a re�ection across the �\� diagonal
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(the D′ diagonal). We will generally view these operations geometrically, but it is worth noting that
R180 is the reverse�complement map, while D is the group-theoretic inverse. We also observe that the
bar operation commutes with everything in S, so for any g ∈ D4 we use g to denote g composed with
the bar operation.

In this paper we will be concerned with signed permutations that are invariant under certain
subgroups of S. For any subgroup H ≤ S, we write BH

n to denote the set of signed permutations of n
that are invariant under the action of H. There are 35 subgroups of S, but we need not consider all of
them. No signed permutations of length ≥ 2 are invariant under any of the following group elements:
the vertical and horizontal re�ections, either of these composed with the bar operation, and the bar
operation itself. Thus, if a subgroup H contains one or more of these, then BH

n is empty for all n ≥ 2.
After removing all such subgroups from consideration, 13 remain. In addition, some of these are in
conjugate pairs, resulting in 10 conjugacy classes:

{e}, [ {e,D} and {e,D′} ],

[ {e,D} and {e,D′} ], [ {e,R180, D,D′} and {e,R180, D,D′} ],

{e,R180}, {e,R180, D,D′},

{e,R180}, {e,R90, R180, R270},

{e,R180, D,D′}, {e,R90, R180, R270}.

Symmetry is one of the two main concepts of our paper; the other is pattern restriction, or pattern
avoidance. Given signed permutations π ∈ Bn and ρ ∈ Br, we say that π contains ρ whenever π
has a substring that has the same relative order and sign con�guration as ρ. We say that π avoids ρ
whenever π does not contain ρ. Given a set R of signed permutations, we say that π avoids R whenever
π avoids every element of R. We write Bn(R) to denote the set of signed permutations of n that avoid
R. Given a subgroup H ≤ S and a set R of signed permutations, we write BH

n (R) to denote the set
of signed permutations of n that are invariant under H and avoid R.

The seminal paper on pattern restriction is the work of Simion and Schmidt [17], who enumerated
the unsigned permutations that avoid R for every R ⊆ S3, as well as the unsigned involutions that
avoid ρ for each single pattern ρ ∈ S3. Since then, a large body of work has been done on pattern-
restricted permutations; the following references are a small sampling of the literature which is most
relevant to the present study. Guibert and Mansour [10] enumerated the unsigned involutions that
avoid R for every R ⊆ S3, and they did the same for several sets R of longer patterns. Simion [16]
and Mansour and West [14] enumerated the signed permutations that avoid R for every R ⊆ B2.
Dukes and Mansour [5] did the same thing for signed involutions; Dukes, Mansour, and Reifegerste [6]
extended these results to signed involutions avoiding patterns of lengths 3 and 4; Mansour and Sun [12]
enumerated restricted signed permutations of even sign (meaning the product of the signs is positive).
Egge [8] enumerated the unsigned permutations that are invariant under H and avoid R, for every
H ≤ D4 and R ⊆ S3.

Our purpose is to present formulas or recurrence relations that enumerate BH
n (R), for every H ≤ S

and every R ⊆ B2. This is analogous to the work of Egge [8], who enumerated SH
n (R) for every H ≤ D4

and every R ⊆ S3. BH
n (R) has already been enumerated for H = {e} (see [16], [14]) and H = {e,D}

(see [5]). Thus, in this paper, we enumerate BH
n (R) only for the remaining 11 subgroups H ≤ S. The
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following lemma considerably reduces the task of enumeration.

Lemma 1.1 Let H ≤ S, let g ∈ S, and let R be a set of signed patterns. Let H ′ = gHg−1 be conjugate

to H by g. For all n, if π ∈ BH
n (R), then g(π) ∈ BH′

n (g(R)). That is, g is a canonical bijection from

BH
n (R) to BH′

n (g(R)).

Proof. Let h′ ∈ H ′. Then there exists h ∈ H such that h′ = ghg−1. Using the fact that π is invariant
under h,

h′(g(π)) = ghg−1g(π) = gh(π) = g(π),

so g(π) is invariant under h′ for every h′ ∈ H ′. Thus, g(π) is invariant under H ′.
Furthermore, it is easy to check (by drawing diagrams) that π avoids R if and only if g(π) avoids

g(R). 2

This lemma has three important consequences. First of all, let H ≤ S, let R be a set of patterns,
and let π ∈ BH

n (R). Then Lemma 1.1 lets us conclude that π ∈ BH
n (h(R)) for every h ∈ H. This

means that π avoids H(R), the image of R under H. Thus, BH
n (R) = BH

n (H(R)). Given H and
R, in this paper we will only explicitly enumerate BH

n (H(R))�that is, we only examine the maximal
equivalent pattern set.

Second, if g ∈ S is in N(H) (the normalizer of H), then by Lemma 1.1 g is a canonical bijection
from BH

n (R) to BH
n (g(R)). Thus, |BH

n (R)| = |BH
n (g(R))| for all g ∈ N(H), so we need only check

one of them. If H is conjugate only to itself, then N(H) = S; if H comes in a conjugate pair, then
N(H) = {e,R180, D,D′, e, R180, D,D′}.

Third, if H ′ = gHg−1 and H ̸= H ′ (that is, {H,H ′} is one of the three conjugate pairs), then by
Lemma 1.1 g is a canonical bijection from BH

n (R) to BH′
n (g(R)). Thus, for every R ⊆ B2, there exists

R′ ⊆ B2 [namely R′ = g(R)] such that |BH
n (R)| = |BH′

n (R′)|, so we need only check H. The upshot is
that it su�ces to look at only one representative from each of the 8 remaining conjugacy classes.

We now outline our paper and provide examples of some results. In Section 2, we enumerate
pattern-restricted signed permutations invariant under R180. To count the unrestricted R180-invariant
permutations, we establish a bijection to four-colored permutations (Thm. 2.1); to count those that
avoid 2̄1̄, we use a similar bijection to three-colored permutations (Thm. 2.2). We �nd other formulas
that enumerate the latter, including a simple recurrence relation that we prove using generating func-
tions. In Section 3, we enumerate pattern-restricted signed permutations invariant under R180. In order
to count the unrestricted permutations (Thm. 3.1) and the permutations that avoid 2̄1 (Thm. 3.2), we
establish bijections to certain sets of permutations invariant under R180. We also use generating trees
and the kernel method to prove that the set avoiding {2̄1̄, 2̄1, 21} is enumerated by

(
2k+1
k

)
(Thm. 3.9).

In Section 4, we enumerate pattern-restricted signed permutations invariant under D and D′, which
generate the subgroup H = {e,R180, D,D′}. In Section 5, we do the same for D-invariant permuta-
tions. For example, the set avoiding {2̄1̄, 2̄1, 21} is enumerated by the Catalan numbers (Thm. 5.6). In
Section 6, we enumerate pattern-restricted signed permutations invariant under D and D′, which gen-
erate the subgroupW = {e,R180, D,D′}. We use a bijection to prove that the unrestrictedW -invariant
permutations are enumerated by 2k times the number of unsigned involutions (Thm. 6.1). In order to
prove that the set avoiding {1̄2̄, 1̄2, 12} is enumerated by

(
k

⌊k/2⌋
)
, we use a bijection to a particular class

of restricted unsigned permutations (Thm. 6.6). In Section 7, we enumerate pattern-restricted signed
permutations invariant under D and D′, which generate the subgroup H = {e,R180,D,D′}. In Sec-
tion 8, we do the same for ⟨R90⟩- or ⟨R90⟩-invariant permutations, both of which we treat in the same
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section because of their similarity. The paper until this point deals only with length-2 patterns, but in
Section 9 we give two general enumerative results about permutations that avoid certain longer pat-
terns. In Section 10, we pose open questions regarding combinatorial proofs, r-colored permutations,
and connections with permutation tableaux.

2 Signed permutations invariant under R180

Let B180
n be the set of signed permutations of length n that are invariant under the subgroup ⟨R180⟩ =

{e,R180} of S. Recall from our introduction that applying R180 to a signed permutation is the same
as taking the reverse�complement. In this section, we enumerate B180

n (R) for each R ⊆ B2.

We start by enumerating the permutations invariant under R180 with no pattern avoidance.

Theorem 2.1 For all k ≥ 0,

|B180
2k | = 4kk!

and

|B180
2k+1| = 2 · |B180

2k | = 2 · 4kk!.

We give two di�erent proofs.

Proof.[Direct Proof. ] Let π ∈ B180
2k . There are 4k choices for the �rst column of the diagram of

π: 2k positions and 2 signs. In addition, the �rst column's dot determines the last column's dot.
Now there are only 4k − 4 choices of what to put in the second column, and this determines the
second-to-last column. We continue in this way until column k, in which only 4 choices remain. Thus,
|B180

2k | = (4k)(4k − 4) · · · (8)(4) = 4kk!.

Now let π ∈ B180
2k+1. There must be a dot in the central box, and there are two choices for its sign.

Remove this dot's row and column; what remains is in B180
2k . So |B180

2k+1| = 2 · |B180
2k | = 2 · 4kk!. 2

Proof.[Bijective Proof. ] A four-colored permutation is a permutation, written in one-line notation, in
which every entry has a superscript chosen from the set {0, 1, 2, 3}. We can make diagrams of four-
colored permutations in the same way as signed permutations, except that for each dot we choose a
color from a set of four colors. Let Qn be the set of four-colored permutations of length n. Since we
have 4 choices of color for each entry, |Qn| = 4nn!.

We construct a bijection from Qn to B180
2n as follows. Given π ∈ Qn, copy the n × n diagram of

π into the lower-left quadrant of a 2n× 2n grid. Re�ect all of the color-2 and color-3 dots across the
grid's horizontal center line, moving them into the upper-left quadrant. Then �ll in the right half of the
2n× 2n grid with a 180-degree rotation of the left half. Now replace all color-2 dots with color-0, and
replace all color-3 dots with color-1. It is easy to check that this map sends π to a signed permutation
in B180

2n . The process is invertible, so it is a bijection. Therefore, |B180
2k | = |Qk| = 4kk!.

The formula for |B180
2k+1| can now be proved in the same way as in the direct proof. 2

One thing that may be interesting to note is that B180
2k is a group under the usual multiplication

of signed permutations. Speci�cally, it is isomorphic to the semidirect product V k o Sk, where V is
the Klein four-group. To see this, we interpret an element π of B180

2k as having two parts. The �rst
part, which is an element of V k, encodes whether each dot on the left half of π is barred or nonbarred,
and whether it is in the top or bottom half of the permutation. The second part is an unsigned
permutation of k, which encodes the unsigned permutation of the left half of π, taking the re�ection
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over the horizontal line for any dots in the top half. The right half is then the image of the left half under
R180. For example, if π = 2̄615̄4̄837̄ ∈ B180

8 , then if a represents a barred dot in the lower half and b
represents a nonbarred dot in the upper half, then π is represented as ((a, b, e, ab), 2314). Furthermore,

this group is a subgroup of B180
2k ∪ B180

2k , which when interpreted in the same way is isomorphic to

the group (Z3
2)

k o Sk. B180
2k is a normal subgroup of index 2 in B180

2k ∪ B180
2k since B180

2k and B180
2k are

equinumerous. Note that B180
2k+1 is a group in the same way that B180

2k is a group except that the choice

of color for the middle square means that B180
2k+1 is isomorphic to Z2 ⊕ (V k o Sk). Unfortunately, once

we introduce pattern avoidance, the group structure disappears in general. Only in a few cases are the
sets B180

2k (R) actually groups, and always a relatively trivial group. For instance, B180
2k (2̄1̄, 2̄1, 21̄, 21)

is isomorphic to (Z2)
k because it contains the strictly increasing permutations invariant under R180.

Now we move on to sets with pattern avoidance. We have three di�erent formulas that enumerate
B180

2k (2̄1̄).

Theorem 2.2 For all k ≥ 0, let ak = |B180
2k (2̄1̄)|. Then the following hold.

(i) For all k ≥ 0,

ak =

k∑
j=0

(
k

j

)2

2jj!. (1)

(ii) a0 = 1 and, for all k ≥ 1,

ak = 2kak−1 +
k−1∑
j=0

2k−j−1(k − 1)!

j!
aj . (2)

(iii) a0 = 1, a1 = 3, and, for all k ≥ 2,

ak = (4k − 1)ak−1 − 4(k − 1)2ak−2. (3)

(iv) For all k ≥ 0,

|B180
2k+1(2̄1̄)| = 2ak. (4)

Proof. (i) One way to prove that (1) holds is by directly counting the number of ways we can form
an element π ∈ B180

2k (2̄1̄), by choosing which rows and columns of the diagram of π have barred dots
and then ordering the nonbarred dots. However, we will instead prove this result by constructing a
bijection with a restricted set of three-colored permutations.

A three-colored permutation is a permutation, written in one-line notation, in which every entry
has a superscript chosen from the set {0, 1, 2}. We can make diagrams of three-colored permutations
in the same way we do for signed permutations, except that for each dot we choose a color from a set
of three colors. Given a three-colored permutation π, we say that π avoids 2111 whenever π has no
pair of color-1 entries in descending order. Let Tn(2

111) be the set of three-colored permutations of
length n that avoid 2111. By [11, Thm. 5.1], Tn(2

111) is enumerated by the formula in (1).

We construct a bijection from Tn(2
111) to B180

2n (2̄1̄) as follows. Given π ∈ Tn(2
111), copy the n×n

diagram of π into the lower-left quadrant of a 2n × 2n grid. Re�ect all of the color-2 dots across the
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grid's horizontal center line, moving them into the upper-left quadrant. Then �ll in the right half of
the 2n× 2n grid with a 180-degree rotation of the left half. Now replace all color-2 dots with color-0.

Note that this map is the same as that used in proving Theorem 2.1, if we treat a three-color
permutation as a four-color permutation in which no entry has color 3. It is easy to check that
this map sends π to a signed permutation in B180

2n (2̄1̄). The reason the map is surjective is that no
permutation in B180

2n (2̄1̄) can have any barred dot in its upper-left and lower-right quadrants (else
the dot would form a 2̄1̄ with its image). The process is invertible, so it is a bijection. Therefore,
|B180

2k (2̄1̄)| = |Tk(2
111)|, and (1) follows.

(ii) Let π ∈ B180
2k (2̄1̄) for k ≥ 1. We consider two cases.

Case I. π has nonbarred 1. Then, since π is invariant under R180, it also has nonbarred 2k. We
can put the 1 in any column, of which there are 2k choices. This determines the placement of 2k as
well. The rest of the dots must form a permutation in B180

2(k−1)(2̄1̄), of which there are ak−1. So, in this
case, the number of choices for π is 2kak−1.

Case II. π has 1̄. Then, since π is invariant under R180, it also has 2k. Since π avoids 2̄1̄, the 1̄
must be before the 2k. So 1̄ is in the left half. Let 0 ≤ j ≤ k−1 such that the 1̄ is in column k− j. All
dots to the left of 1̄ must be nonbarred, to avoid 2̄1̄. Then there are 2k−2 choices for the �rst column,
2k − 4 choices remaining for the second column, . . ., and 2j + 2 choices remaining for the last column

before the 1̄. Multiplying these together gives us 2k−j−1(k−1)!
j! choices for the columns to the left of the

1̄. We have now determined (by symmetry) the part to the right of the 2k. What remains, in the 2j
columns between the 1̄ and the 2k, must form a permutation in B180

2j (2̄1̄), of which there are aj . So,

for each j, the number of choices for π is 2k−j−1(k−1)!
j! aj . Summing this over all j from 0 to k − 1 and

adding the result of case I (namely, 2kak−1) gives equation (2), as required.

(iii) We prove that the sequences in (ii) and (iii) are equal by showing that they have the same
exponential generating function.

First we cover the sequence in (ii), as given by ak in (2). Let F (x) =
∑∞

k=0
ak
k! x

k, the exponential
generating function for this sequence. Replace k with k + 1 in (2), multiply by xk/k!, and sum over
all k ≥ 0; the result is

F ′(x) = 2xF ′(x) + 2F (x) + F (x)
1

1− 2x
,

so that

(1− 2x)F ′(x) =

(
2 +

1

1− 2x

)
F (x).

The exponential generating function for the sequence in (ii) is the solution to the above di�erential
equation with F (0) = a0 = 1, so

F (x) =
e

x
1−2x

1− 2x
. (5)

Second, we cover the sequence in (iii), as given by ak in (3). Let G(x) =
∑∞

k=0
ak
k! x

k be the
exponential generating function, this time for the sequence in (iii). Replace k with k + 2 in (3),

multiply by xk

k! , and sum over all k ≥ 0 to �nd that

G′′(x) = 4xG′′(x) + 7G′(x)− 4x2G′′(x)− 12xG′(x)− 4G(x),
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so that
(1− 4x+ 4x2)G′′(x) = (7− 12x)G′(x)− 4G(x).

The exponential generating function for the sequence in (iii) is the solution to the above di�erential
equation with G(0) = a0 = 1 and G′(0) = a1 = 3, so

G(x) =
e

x
1−2x

1− 2x
. (6)

Now since F (x) = G(x), the result follows.

(iv) Let π ∈ B180
2k+1(2̄1̄). Then, since π is invariant under R180, the central box of π has a dot in

it, which can be nonbarred or barred. Remove the row and column of this dot; what remains is in
B180

2k (2̄1̄). To see that this process is invertible (up to the choice of the central dot's sign), we �rst
observe that inserting a nonbarred entry in the central position of a permutation in B180

2k (2̄1̄) cannot
create a 2̄1̄ pattern. If insertion of a barred entry creates a 2̄1̄ pattern, then by R180 invariance the
other entry in this pattern and its image under R180 must also form a 2̄1̄ pattern, contradicting the
fact that we started with a permutation which avoids 2̄1̄. Now the result follows. 2

Theorem 2.3 For all k ≥ 0,
|B180

2k (2̄1̄, 1̄2̄)| = 2kk!

and

|B180
2k+1(2̄1̄, 1̄2̄)| = 2k+1k!.

Proof. If π ∈ B180
n (2̄1̄, 1̄2̄) (n can be even or odd) has more than one barred dot, then it must contain

either a 1̄2̄ or a 2̄1̄. If the jth column has a barred dot, then so does the (n− j + 1)th column, as the
image of the jth-column dot under R180. Thus, j = n− j + 1, and so the barred dot (if there is one)
can only be in the center square (when n is odd). If we remove the central row and column, then what
remains is in S180

2k (where n = 2k or n = 2k + 1), and so there are 2kk! choices for this [8, Thm. 2.5].
The result follows. 2

Theorem 2.4 For all k ≥ 0,

|B180
2k (2̄1̄, 21)| =

(
2k

k

)
and

|B180
2k+1(2̄1̄, 21)| = 2

(
2k

k

)
.

Proof. Observe that π ∈ B180
n (2̄1̄, 21) if and only if the barred entries and the nonbarred entries of π

form increasing sequences. We �rst prove the result when n = 2k. Consider the k rows in the lower
half and the k columns in the left half of π. Choose any k of these 2k rows and columns. The chosen
columns are for barred dots and the chosen rows are for nonbarred dots. By construction, there are the
same number of barred rows and columns in the lower-left quadrant, so we �ll them in in increasing
order, �ll in the nonbarred dots, and then complete the upper-right quadrant using R180.

We now prove the result when n = 2k + 1. If we remove the center row and column, we get
a permutation with the next smallest even length. The center square's dot can be either barred or
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nonbarred, and so we have twice as many permutations here as in the next smallest even case. Every
dot except the middle is in either the lower-left or upper-right quadrant, so this does not create a 2̄1̄
or a 21. 2

The next set has the same formula as the previous one, and there is a natural bijection, as we will
explain.

Theorem 2.5 For all n ≥ 0,
|B180

n (2̄1̄, 12)| = |B180
n (2̄1̄, 21)|

(see Theorem 2.4).

Proof. We construct a bijection from B180
n (2̄1̄, 21) to B180

n (2̄1̄, 12). For each π ∈ B180
n (2̄1̄, 21), let π′

be the result of re�ecting the nonbarred dots of π across the central horizontal line. Observe that π′

is a signed permutation since π is invariant under R180, so j is nonbarred if and only if n + 1 − j is
nonbarred. Also, since π avoids 2̄1̄ and 21, π′ avoids 2̄1̄ and 12, so π′ ∈ B180

n (2̄1̄, 12). Since π′′ = π,
this map is a bijection, and the result follows. 2

In the following theorem, we give proofs of two di�erent formulas for the same set. The �rst is in
terms of another set of restricted permutations, and the second is a recurrence relation.

Theorem 2.6 Let ak = |B180
2k (2̄1, 21̄)|. Then the following hold.

(i) For all k ≥ 0,

ak = 2kk! +

k−1∑
j=0

2k−j(k − j)!|Bj(2̄1, 21̄)|. (7)

(ii) a0 = 1, a1 = 4, and, for all k ≥ 2,

ak = 2k+1k! +

k−1∑
j=1

(k − j)!aj . (8)

(iii) For all k ≥ 0,
|B180

2k+1(2̄1, 21̄)| = ak + |Bk(2̄1, 21̄)|. (9)

Proof. (i) Let π ∈ B180
2k (2̄1, 21̄). Then, if π has either only barred entries or only nonbarred entries,

then the patterns are automatically avoided, and so there are 2kk! permutations for each of these cases.
If π has at least one barred dot and one nonbarred dot, then π must consist of smaller single-

sign permutations centered on the D diagonal. These subpermutations alternate in sign; otherwise
we can combine two of them. Since π is invariant under R180, the subpermutations on the right
half of π are the images under R180 of the subpermutations on the left half. Also, there is a middle
subpermutation since the kth and (k + 1)th elements of π must have the same sign. This middle
subpermutation must be invariant under R180, and there is only one possible sign, the opposite sign
from the adjacent permutations. Therefore, we choose 2j the size of the center subpermutation,
choose the center subpermutation as an unsigned permutation invariant under R180, and then choose
the subpermutations on the left half by noting that the lower-left (k − j)-square is an element of
Bk−j(2̄1, 21̄). The formula follows.
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(ii) The initial terms a0 and a1 are easy to verify.
De�ne Ak,j to be the set of all π ∈ B180

2k (2̄1, 21̄) such that j is the length of the longest single-sign
pre�x of π. For example, 2135̄4̄687 ∈ A4,3. If π ∈ B180

2k (2̄1, 21̄) is all of the same sign, then we will say
π ∈ Ak,k. Lastly, let ak,j = |Ak,j |.

Let π ∈ Ak,k for k ≥ 1. Since π is all the same sign, the pattern restrictions do not apply: π can
be any permutation in S180

2k , either all nonbarred or all barred. Since |S180
2k | = 2kk! by [8, Thm. 2.5],

for all k ≥ 1, we have
ak,k = 2 · |S180

2k | = 2k+1k!.

Now let 1 ≤ j ≤ k − 1 and π ∈ Ak,j . Without loss of generality, π begins with a nonbarred entry.
We can add 1 to every entry in π and insert 1 and 2k + 2 (barred or nonbarred). Since π is invariant
under R180, we must place 1 and 2k + 2 opposite from each other in π; we now examine how to insert
them. If we insert 1 (nonbarred) into π, it must go somewhere in the nonbarred pre�x in order to
avoid 2̄1; there are j + 1 places for this, and each one results in a unique π′ ∈ Ak+1,j+1. If we insert
1̄, it must go in the �rst position in order to avoid 21̄; this results in one π′ ∈ Ak+1,1. Thus, if we
extend π to π′ by inserting 1 and 2k+ 2 (barred or nonbarred), then there are j + 1 choices such that
π′ ∈ Ak+1,j+1 and one choice such that π′ ∈ Ak+1,1. (Note that, if π ∈ Ak,k, then there is one way for
it to extend to a π′ ∈ Ak+1,1.)

Since this insertion process is invertible (up to choice of insertion point), it yields the following
recurrence relation:

ak,k = 2k+1k! (k ≥ 1); (10)

ak,1 =

k−1∑
j=1

ak−1,j = ak−1 (k ≥ 2); (11)

ak,j = jak−1,j−1 (2 ≤ j ≤ k − 1). (12)

It follows inductively from equations (11) and (12) that, for all j with 1 ≤ j ≤ k − 1,

ak,j = j!ak−j+1,1 = j!ak−j . (13)

Now, since ak =
∑k

j=1 ak,j , the recurrence in (8) follows from (10) and (13).

(iii) We construct a bijection from B180
2k+1(2̄1, 21̄) to the union B180

2k (2̄1, 21̄)∪Bk(2̄1, 21̄), as follows.
Let π ∈ B180

2k+1(2̄1, 21̄). If the center dot is the same sign as the dots in its adjacent columns, then remove
the center row and column; the result is a unique element of B180

2k (2̄1, 21̄). Else, all the non-central
dots in π must be in the lower-left and upper-right quadrants, because of the pattern restrictions; the
lower-left k × k quadrant is a unique element of Bk(2̄1, 21̄). It is easy to check that this map is a
bijection, and the result follows. 2

We remark that the set Bn(2̄1, 21̄), which is used in the preceding theorem, is enumerated by [14,
Thm. 2.2] and by our Lemma 3.5.

Theorem 2.7 For all n ≥ 0,

|B180
n (2̄1̄, 1̄2, 12̄)| = 2⌊n/2⌋⌊n/2⌋! +

⌈n/2⌉−1∑
j=0

j!.
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Proof. Let π ∈ B180
n (2̄1̄, 1̄2, 12̄). In the case where π has no barred dots, π is any unsigned permutation

invariant under R180, of which there are 2⌊n/2⌋⌊n/2⌋! (see [8, Thm. 2.5]). In the case where π has at
least one barred dot, let j be the number of nonbarred dots before the �rst barred dot of π. Because
of the pattern restrictions on π, the barred dots must all be in the center and increasing, and the
nonbarred dots must be in the upper-left and lower-right corners. Choose an unsigned permutation

for the upper-left corner, of which there are j!. So there are
∑⌈n/2⌉−1

j=0 j! choices in all, and the result
follows from adding the two cases together. 2

Theorem 2.8 Let ak = |B180
2k (2̄1̄, 21̄, 2̄1)|. Then a0 = 1 and, for all k ≥ 1,

ak = 2kk! +

k−1∑
j=0

(k − j − 1)!aj .

Furthermore, let bk = |B180
2k+1(2̄1̄, 21̄, 2̄1)|. Then b0 = 2 and, for all k ≥ 1,

bk = (2k + 1)k! +
k−1∑
j=0

(k − j − 1)!bj .

Proof. We �rst prove the recurrence relation for ak, the even-length enumeration. The initial term a0
is easy to verify.

De�ne Ak,j to be the set of all π ∈ B180
2k (2̄1̄, 21̄, 2̄1) such that the �rst barred entry is in position j.

If π ∈ B180
2k (2̄1̄, 21̄, 2̄1) is entirely nonbarred, then we will say π ∈ Ak,k+1. Lastly, let ak,j = |Ak,j |.

Let π ∈ Ak,k+1 for k ≥ 1. Since π is all nonbarred, the pattern restrictions do not apply: π can be
any permutation in S180

2k , without bars. Since |S180
2k | = 2kk! [8, Thm. 2.5], we have ak,k+1 = 2kk! for

all k ≥ 1.
Now let 1 ≤ j ≤ k and π ∈ Ak,j . We can add 1 to every entry in π and insert 1 and 2k+2 (barred

or nonbarred). Since π is invariant under R180, we must place 1 and 2k + 2 opposite from each other
in π; we now examine how to insert them. If we insert 2k + 2 (nonbarred) into π, it must go before
the �rst barred entry in order to avoid 21̄; there are j places for this, and each one results in a unique
π′ ∈ Ak+1,j+1. If we insert 2k + 2, it must go in the last position in order to avoid 2̄1 and 2̄1̄, and so
1̄ goes in the �rst position; this results in one π′ ∈ Ak+1,1. Thus, if we extend π to π′ by inserting 1
and 2k + 2 (barred or nonbarred), then there are j choices such that π′ ∈ Ak+1,j+1 and 1 choice such
that π′ ∈ Ak+1,1. (Note that, if π ∈ Ak,k+1, then there is one way for it to extend to a π′ ∈ Ak+1,1.)

Since this insertion process is invertible (up to choice of insertion point), it yields the following
recurrence relation:

ak,k+1 = 2kk! (k ≥ 1); (14)

ak,1 =

k∑
j=1

ak−1,j = ak−1 (k ≥ 1); (15)

ak,j = (j − 1)ak−1,j−1 (2 ≤ j ≤ k). (16)

It follows inductively from equations (15) and (16) that, for all j with 1 ≤ j ≤ k,

ak,j = (j − 1)!ak−j+1,1 = (j − 1)!ak−j . (17)
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Now, since ak =
∑k+1

j=1 ak,j , the required recurrence for ak (the even-length enumeration) follows from
(14) and (17).

The recurrence relation required for bk, the odd-length enumeration, can be proved in the same
way. The subtle di�erence in the formula (2k + 1 instead of 2k) comes from the fact that the �rst
barred entry is now allowed to be placed in the (k + 1)th position, in the center of the diagram. 2

Theorem 2.9 For all n ≥ 1,

|B180
n (2̄1, 1̄2, 12̄, 21̄)| = 2 · |S180

n | = 2⌊n/2⌋+1⌊n/2⌋!.

Proof. Let π ∈ B180
n (2̄1, 1̄2, 12̄, 21̄). Our avoidances mean that the entire permutation must have the

same sign. Once we have chosen the sign, we just �ll in an unsigned permutation invariant under R180.
The formula for the latter is given by [8, Thm. 2.5], and our formula here follows. 2

Theorem 2.10 For all k ≥ 0,

|B180
2k (2̄1̄, 2̄1, 1̄2̄, 21̄)| = 2kk!

and

|B180
2k+1(2̄1̄, 2̄1, 1̄2̄, 21̄)| = (2k + 1)k!.

Proof. First note that if π ∈ B180
n avoids 2̄1̄ and 1̄2̄, then π has at most one barred entry. If n is

even, then there are no barred entries, so we just have an element of S180
n , which is enumerated in [8,

Thm. 2.5].

If n is odd, then the center square has either a nonbarred dot or a barred dot. In the former
case, the rest of the permutation is an element of S180

2k (where n = 2k + 1), which is enumerated in [8,
Thm. 2.5]. In the latter case, everything on the left must be below the center row, so we can choose any
signed permutation in the bottom left quadrant�for which there are k! choices. Since π is invariant
under R180, the right half and thus the entirety of π are now determined. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Table 1, along with the other results from this section.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated B180

n (R)
for every R ⊆ B2.

3 Signed permutations invariant under R180

Let B180
n be the set of signed permutations of length n that are invariant under the subgroup ⟨R180⟩ =

{e,R180} of S. Recall from our introduction that applying R180 to a signed permutation is the same as

taking the reverse�complement and applying the bar operation. In this section, we enumerate B180
n (R)

for each R ⊆ B2.

A signed permutation of odd length cannot be invariant under R180, since nothing can be placed
in the center column without violating the symmetry. Thus, B180

2k+1(R) = ∅ for each R ⊆ B2. Now it

remains only to enumerate B180
2k (R) for each R ⊆ B2.

We start by enumerating the permutations invariant under R180 with no pattern avoidance.
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n R |B180
n (R)| Recurrence

2k
2k + 1

∅ 4kk!
2 · 4kk!

2k
2k + 1

{2̄1̄}
∑k

j=0

(
k
j

)2
2jj!

2
∑k

j=0

(
k
j

)2
2jj!

ak = (4k − 1)ak−1 − 4(k − 1)2ak−2

bk = 2ak

2k
2k + 1

{2̄1̄, 1̄2̄} 2kk!
2k+1k!

2k
2k + 1

{2̄1̄, 21}
(
2k
k

)
2
(
2k
k

)
2k

2k + 1
{2̄1̄, 12}

(
2k
k

)
2
(
2k
k

)
2k

2k + 1
{2̄1, 21̄} Theorem 2.6(i)

ak = 2k+1k! +
∑k−1

j=1 (k − j)!aj
bk = ak + |Bk(2̄1, 21̄)|

n {2̄1̄, 1̄2, 12̄} 2⌊n/2⌋⌊n/2⌋! +
∑⌈n/2⌉−1

j=0 j!

2k
2k + 1

{2̄1̄, 21̄, 2̄1}
ak = 2kk! +

∑k−1
j=0 (k − j − 1)!aj

bk = (2k + 1)k! +
∑k−1

j=0 (k − j − 1)!bj
n {2̄1, 1̄2, 12̄, 21̄} 2⌊n/2⌋+1⌊n/2⌋!
n {2̄1̄, 2̄1, 21̄, 21} 2⌈n/2⌉

2k
2k + 1

{2̄1̄, 2̄1, 1̄2̄, 21̄} 2kk!
(2k + 1)k!

n {2̄1̄, 2̄1, 1̄2, 12̄, 21̄} 1 + 2⌊n/2⌋⌊n/2⌋!
n {2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄} 2⌊n/2⌋⌊n/2⌋!
n {1̄2̄, 2̄1̄, 12, 21} 0 Note: the same is true for any S ⊇ R.
2k

2k + 1
{2̄1̄, 2̄1, 12, 21̄} k + 1

k + 2
n {2̄1̄, 2̄1, 1̄2, 12̄, 21̄, 21} 2
n {2̄1̄, 2̄1, 1̄2̄, 12, 21̄} 1
n {2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 12, 21̄} 1
2k

2k + 1
{2̄1̄, 1̄2̄, 12} 1

2
2k

2k + 1
{2̄1̄, 2̄1, 1̄2̄, 21̄, 21} 1

2
n {2̄1̄, 1̄2, 12̄, 21} 2
n {2̄1̄, 2̄1, 1̄2, 12̄, 21̄, 21} 2
n {2̄1̄, 2̄1, 1̄2, 12̄, 12, 21̄} 2

Table 1: Enumerations of signed permutations of length at least 4 that are invariant under R180 and avoid R.

Theorem 3.1 For all k ≥ 0,

|B180
2k | = |B180

2k | = 4kk!.

Proof. There is a bijection between B180
2k and B180

2k , as follows: given a signed permutation in B180
2k ,

change the sign on everything in the right half. The formula now follows from Theorem 2.1. 2

Now we move on to sets with pattern avoidance.
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Theorem 3.2 For all k ≥ 0,

|B180
2k (2̄1)| = |B180

2k (2̄1̄)|,
the latter of which is enumerated in Theorem 2.2.

Proof. We construct a map as follows. Let π ∈ B180
2k (2̄1̄). Look at the left half of π. Every place where

a 2̄1 pattern occurs, put a bar on the second entry of it; this turns it into a 2̄1̄. Then perform R180 on
the new left half to get the new right half.

Now we must check that the resulting π′ is an element of B180
2k (2̄1). It is clear from the construction

of the map that π′ is invariant under R180 and that π′ has no 2̄1 patterns contained in its left half.
Further, π′ cannot have a 2̄1 pattern contained in its right half, because R180 would map it to a 2̄1
pattern in the left half.

Every barred dot in the left half of π must have been in the lower half, or else it would have formed
a 2̄1̄ with its image under R180. In the left half of π′, all of the new barred dots from the map were
made lower than the barred dots that were already in π. Thus, every barred dot in the left half of π′

is in the lower half. Then, since π′ is invariant under R180, every nonbarred dot in the right half of π′

is in the upper half. So π′ cannot have a 2̄1 pattern anywhere. Therefore, the map goes into B180
2k (2̄1).

It is easy to verify that this map can be inverted, so it is a bijection between B180
2k (2̄1) and B180

2k (2̄1̄).
2

Theorem 3.3 For all k ≥ 0,

|B180
2k (2̄1̄, 21)| = 22k.

Proof. To construct π ∈ B180
2k (2̄1̄, 21), for each j ≤ k, choose whether column j or column 2k − j + 1

of π has a barred dot (exactly one of these columns has a barred dot since π is invariant under R180).
Similarly, for each j, choose whether row j or row 2k − j + 1 has a barred dot. Then place the barred
dots and nonbarred dots in ascending order in the appropriate spaces. 2

Theorem 3.4 Let ak = |B180
2k (2̄1, 21̄)| for all k ≥ 0. Then a0 = 1 and, for all k ≥ 1,

ak = k! +

k−1∑
j=0

(k − j)!aj .

Before we can prove this theorem, we need to enumerate Bn(2̄1, 21̄). The reverse map is a bijection
to Bn(12̄, 1̄2), which Mansour and West [14, Thm. 2.2] enumerate with an explicit formula involving a
sum over compositions of n:

|Bn(12̄, 1̄2)| = 2

n∑
ℓ=1

∑
i1+i2+···+iℓ=n

ij≥1

ℓ∏
j=1

ij !. (18)

Here we give a recurrence relation for |Bn(12̄, 1̄2)| that is simpler than the formula above.

Lemma 3.5 Let an = |Bn(12̄, 1̄2)|. Then a0 = 1 and, for all n ≥ 1,

an = n! +

n−1∑
j=0

(n− j)!aj .
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Proof. The n = 0 case is easily veri�ed. De�ne An,j to be the set of all π ∈ Bn(12̄, 1̄2) such that j is
the length of the longest single-sign pre�x of π. For example, 7564̄3̄21̄ ∈ A7,3. Let an,j = |An,j |.

Let 1 ≤ j ≤ n and π ∈ An,j . Without loss of generality, suppose π begins with a nonbarred entry.
If we insert n+ 1 into π, it must go somewhere in the nonbarred pre�x in order to avoid 1̄2; there are
j + 1 places for this, and each one results in a unique π′ ∈ An+1,j+1. If we insert n+ 1, it must go in
the �rst position in order to avoid 12̄; this results in one π′ ∈ An+1,1. Thus, if we extend π to π′ by
inserting a n+ 1 or n+ 1, then there are j + 1 choices such that π′ ∈ An+1,j+1 and 1 choice such that
π′ ∈ An+1,1.

Since this insertion process is invertible (up to choice of insertion point), it yields the following
recurrence relation:

a1,1 = 2; (19)

an,1 =

n−1∑
j=1

an−1,j = an−1 (n ≥ 2); (20)

an,j = jan−1,j−1 (2 ≤ j ≤ n). (21)

It follows inductively from equation (21) that, for all j with 1 ≤ j ≤ n,

an,j = j!an−j+1,1. (22)

Now, since an =
∑n

j=1 an,j , the required recurrence for an follows from (19), (20), and (22). 2

We now prove Theorem 3.4 using Lemma 3.5.
Proof.[Proof of Theorem 3.4. ] Let π ∈ B180

2k (2̄1, 21̄). If there is anything in the upper-left quadrant,
it is higher than its image under R180, which will create a 2̄1 or a 21̄. Therefore, �ll in the lower-
left quadrant with a permutation avoiding 2̄1 and 21̄, and this determines the right half. This is a
bijection between B180

2k (2̄1, 21̄) and Bk(2̄1, 21̄). The reverse map is a bijection between Bk(2̄1, 21̄) and
Bk(12̄, 1̄2). Compose these bijections, and the required recurrence relation follows from Lemma 3.5. 2

Theorem 3.6 For all k ≥ 0,

|B180
2k (2̄1, 1̄2)| = 2kk!.

Proof. Note that π ∈ B180
2k avoids 2̄1 and 1̄2 if and only if π has only nonbarred dots in its left half and

only barred dots in its right half. Therefore, we can uniquely construct each element of B180
2k (2̄1, 1̄2)

by choosing an element of S180
2k (see [8, Thm. 2.5]) and putting bars over the dots in its right half. 2

Theorem 3.7 For all k ≥ 0,

|B180
2k (2̄1, 1̄2, 12̄)| = k!.

Proof. For every π ∈ B180
2k (2̄1, 1̄2, 12̄), the nonbarred dots of π must be in the left half and the barred

dots must be in the right half. Thus, the nonbarred dots must be in the upper half and the barred
dots must be in the lower half. Choose a nonbarred permutation for the upper-left quadrant; this
determines the entire permutation. 2

Theorem 3.8 For all k ≥ 0,

|B180
2k (2̄1̄, 1̄2, 21)| = 2k+1 − 1.
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Proof. Let π ∈ B180
2k (2̄1̄, 1̄2, 21). Every dot in the lower-left quadrant of π must be nonbarred, or else

it forms a 1̄2 with its image under R180. For the same reason, every dot in the upper-right quadrant
must be barred. We now look at what can go in the upper-left quadrant.

Suppose the upper-left quadrant of π consists of j barred dots. They must be placed in the
bottommost j rows of the upper-left quadrant, or else they form a 2̄1̄ with something in the upper-
right quadrant. The upper-left quadrant's barred dots must be in increasing order, to avoid 2̄1̄. So,
since we need only to pick the columns to put them in, there are

(
k
j

)
possible con�gurations with j

barred dots in the upper-left quadrant. This choice of columns also determines the lower-left quadrant,
and thus the entirety of π. Therefore, in the case where the upper-left quadrant consists of any positive
number of barred dots, the number of choices for π is

k∑
j=1

(
k

j

)
= 2k − 1.

Now suppose the upper-left quadrant of π consists of j nonbarred dots. By the same reasoning as
above, they must be placed in increasing order in the rightmost columns of the upper-left quadrant,
and the number of choices for π in this case is 2k − 1 again.

The upper-left quadrant cannot contain both a barred dot and a nonbarred dot, or else there would
be a 1̄2 formed by the barred dot in the quadrant's bottommost row and the nonbarred dot in the
quadrant's rightmost column. There is only one other choice for π: putting no dots in the upper-left
quadrant. Thus, the total number of possible π is (2k − 1) + (2k − 1) + 1 = 2k+1 − 1. 2

Theorem 3.9 For all k ≥ 0,

|B180
2k (2̄1̄, 2̄1, 21)| =

(
2k + 1

k

)
.

Proof. Our proof is similar to Egge's proof that |S180
2k (123)| =

(
2k
k

)
[8, Thm. 2.17]. We compute

the generating tree for constructing the permutations in B180
2k (2̄1̄, 2̄1, 21), and then we use the kernel

method to �nd the generating function for {|B180
2k (2̄1̄, 2̄1, 21)|}∞k=0. (For more about generating trees,

see [20].) On each branch, we add the bottom and top rows into the permutation (they are images
under R180). �Adding� a permutation involves placing a dot in the bottom row and another dot at its
image in the top row. For example, to add 1̄2, we place a barred dot in the left half of the bottom
row and a nonbarred dot at the barred dot's image in the right half of the top row. We can add the
following permutations:

• 21̄ i� the right half consists completely of barred dots; we add this into the middle two columns;

• 12̄ in any situation; we put the 1 in the leftmost column;

• 1̄2 in any situation; we put the 1̄ anywhere to the left of all barred dots.

We call a permutation a brahmin whenever it has no barred dot in the left half. We label each
non-brahmin with j, where j − 2 is the number of nonbarred dots to the left of the �rst barred dot;
then, a permutation with label j has j children, all non-brahmins, with labels 2, 3, . . . , j + 1. Each
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brahmin has two brahmin children and k non-brahmin children, with labels 2, 3, . . . , k + 1. Note that
this means that there are 2k brahmins of length 2k.

We can count the non-brahmins by k and j:

F (x, y) =
∑

xkyj ,

where the sum is over the non-brahmins in
∪

k≥0B
180
2k (2̄1̄, 2̄1, 21). Thus the generating function for

{|B180
2k (2̄1̄, 2̄1, 21)|}∞k=0 is F (x, 1) + 1

1−2x .
Counting the non-brahmins by their parents, we get

F (x, y) =

∞∑
k=0

2kxk+1(y2 + . . .+ yk+1) + x

∞∑
j=2

Fj(x)(y
j+1 + yj + . . . y2)

=
xy2

y − 1

(
y

1− 2xy
− 1

1− 2x

)
+

xy2

y − 1
[F (x, y)− F (x, 1)], (23)

where Fj(x) is the unique function for which

F (x, y) =

∞∑
j=2

Fj(x)y
j .

(Fj(x) turns out to be unimportant in our proof.)

Setting y = 1−
√
1−4x
2x in (23), we have xy2

y−1 = 1 and

F (x, 1) +
1

1− 2x
=

1−
√
1− 4x

2x
√
1− 4x

,

which is the ordinary generating function for
(
2n+1
n

)
. 2

Theorem 3.10 For all k ≥ 0,

|B180
2k (2̄1̄, 2̄1, 21̄, 21)| = 2k.

Proof. π ∈ B180
2k (2̄1̄, 2̄1, 21̄, 21) must be strictly increasing, but we can choose the sign for each column

on the left side, which determines the signs for the columns on the right side. 2

Theorem 3.11 For all k ≥ 0,

|B180
2k (2̄1̄, 2̄1, 1̄2, 21)| = 2k.

Proof. For π ∈ B180
2k (2̄1̄, 2̄1, 1̄2, 21), the barred dots must be increasing, as must be the nonbarred dots.

The nonbarred dots must be on the left half of π and the barred dots must be on the right half. Choose
which of the rows in the lower half have nonbarred dots. Fill these in in the leftmost columns. Then
�ll in their images under R180; these are barred dots in the upper-right quadrant. Then, all of the
remaining upper rows must be nonbarred dots in the left half; �ll these in in increasing order. Finally,
�ll in these images, which are barred dots in the lower-right quadrant. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Table 2, along with the other results from this section.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated B180

n (R)
for every R ⊆ B2.
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n R |B180
n (R)| Recurrence

2k ∅ 4kk!

2k {2̄1}
∑k

j=0

(
k
j

)2
2jj! ak = (4k − 1)ak−1 − 4(k − 1)2ak−2

2k {2̄1̄, 21} 22k

2k {2̄1, 21̄} ak = k! +
∑k−1

j=0(k − j)!aj
2k {2̄1, 1̄2} 2kk!

2k {2̄1, 1̄2, 12̄} k!

2k {2̄1̄, 1̄2, 21} 2k+1 − 1

2k {2̄1̄, 2̄1, 21}
(
2k+1
k

)
2k {2̄1̄, 2̄1, 21̄, 21} 2k

2k {2̄1̄, 2̄1, 1̄2, 21} 2k

2k {1̄2̄, 2̄1̄, 12, 21} 0 Note: the same is true for any S ⊇ R.

2k {2̄1, 1̄2, 12̄, 21̄} 0 Note: the same is true for any S ⊇ R.

2k {2̄1̄, 1̄2, 12̄, 21} 2

2k {2̄1̄, 2̄1, 1̄2, 12̄, 21} 1

2k {2̄1̄, 2̄1, 1̄2, 21̄, 21} 1

Table 2: Enumerations of signed permutations of length at least 4 that are invariant under R180 and avoid R.

4 Signed permutations invariant under D and D′

For this section, letH be the subgroup {e,R180, D,D′} ofS. Recall from our introduction that applying
R180 is the same as taking the reverse�complement; D is the same as re�ecting across the �/� diagonal
(the D diagonal), or the same as taking the group-theoretic inverse; and D′ = D ◦R180 = R180 ◦D is
the same as re�ecting across the �\� diagonal (the D′ diagonal).

We start by enumerating the permutations invariant under H with no pattern avoidance.

Theorem 4.1 |BH
0 | = 1, |BH

2 | = 4, and, for all k ≥ 2,

|BH
2k| = 4 · |BH

2(k−1)|+ 4(k − 1)|BH
2(k−2)|.

Furthermore, for all k ≥ 0,
|B2k+1| = 2 · |BH

2k|.

Proof. The base cases are easy to verify. Now let π ∈ BH
2k with k ≥ 2. We examine two cases.

Case I. If the �rst-column dot is in the top or bottom box, then there are 4 choices for it (2 position
choices and 2 signs), and it determines only one other dot. Upon removing the row and column of each
of these two dots, what remains is in BH

2(k−1). Thus, in this case, there are 4 · |BH
2(k−1)| permutations.

Case II. If the �rst-column dot is not in the top or bottom box, then there are 2(k− 1) choices for
the �rst-column dot's position and 2 for its sign, for a total of 4(k − 1) choices. This dot determines
three other dots, by the action of H. Upon removing the row and column of each of these four dots,
what remains is in BH

2(k−2). Thus, in this case, there are 4(k − 1)|BH
2(k−2)| permutations. The sum of

the results over both cases is the required recurrence relation for |BH
2k|, the evens.
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Now suppose that π ∈ BH
2k+1. There must be a dot in the central box, for which there 2 sign

choices. Upon removing its row and column, what remains is in |BH
2k|. Therefore, |BH

2k+1| = 2 · |BH
2k|.
2

Now we move on to sets with pattern avoidance.

Theorem 4.2 |BH
0 (2̄1̄)| = 1, |BH

1 (2̄1̄)| = 2, |BH
2 (2̄1̄)| = 3, |BH

3 (2̄1̄)| = 6, and, for all n ≥ 4,

|BH
n (2̄1̄)| = 3|BH

n−2(2̄1̄)|+ (n− 2)|BH
n−4(2̄1̄)|.

Proof. We show this by induction. The base cases are left as an exercise to the reader. For the
inductive case, for n ≥ 4, choose the leftmost dot of π ∈ BH

n (2̄1̄). If the dot is barred, it must be on
the D diagonal of π because otherwise it, along with its image under D, would create a 2̄1̄. In this
case, remove the rows and columns of the leftmost dot and its image under D′ (the rightmost dot), as
they cannot be part of a 2̄1̄, and proceed to the size-(n − 2) case. If the leftmost dot is nonbarred,
it can be anywhere in the left column. In any case, the nonbarred dots cannot be a part of a 2̄1̄, so
we can remove the rows and columns of the leftmost dot and its images under the elements of H. If
the leftmost dot is at the top or the bottom, this is a total of 2 dots; otherwise, it is a total of 4 dots.
Adding all this up, we have shown the recurrence relation. 2

Theorem 4.3 For all n ≥ 0,

|BH
n (2̄1̄, 21)| = 2⌈n/2⌉.

Proof. Let π ∈ BH
n (2̄1̄, 21). If there were a dot of π not on the D diagonal, then it would form a 2̄1̄

or a 21 with its image under D, and these are forbidden; thus, all dots in π lie on the D diagonal. So
choose the sign of each dot in the left half, and the right half is determined. 2

The next set has the same formula as the previous one, and there is a natural bijection, as we will
explain.

Theorem 4.4 For all n ≥ 0,

|BH
n (2̄1̄, 12)| = |BH

n (2̄1̄, 21)| = 2⌈n/2⌉.

Proof. We construct a bijection from BH
n (2̄1̄, 21) to BH

n (2̄1̄, 12). Take π ∈ BH
n (2̄1̄, 21) and re�ect the

nonbarred dots across the central horizontal line to create π′. The reason π′ is a permutation is that,
if π(j) is a nonbar, then π(n − j) is also a nonbar, so π′ will only have one entry in row π(n − j).
Also, since π avoids 2̄1̄ and 21, π′ avoids 2̄1̄ and 12. Finally, π′ is invariant under H. The map is an
involution, so |B180

n (2̄1̄, 21)| = |B180
n (2̄1̄, 12)|. The formula now follows from Theorem 4.3. 2

Theorem 4.5 Let ak = |BH
2k(2̄1̄, 1̄2̄)|. Then a0 = 1, a1 = 2, and, for all k ≥ 2,

ak = 2ak−1 + 2(k − 1)ak−2.

Furthermore, for all k ≥ 0,

|BH
2k+1(2̄1̄, 1̄2̄)| = 2ak.
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Proof. The initial terms are easy to verify. We �rst prove the result for even-length permutations.
Note that if π ∈ BH

2k(2̄1̄, 1̄2̄), then π has no barred dots. Choose the leftmost dot of π. If it is on either
diagonal, then it has 2 images under H; otherwise it has 4. Remove the rows and columns of each
image, and the recurrence relation follows.

We now prove the result for odd-length permutations. Note that the middle square of π ∈
BH

2k+1(2̄1̄, 1̄2̄) has either a nonbarred dot or a barred dot. Remove the middle row and column of

π, and then the remaining permutation must be an element of BH
2k(2̄1̄, 1̄2̄). 2

We remark that, as seen in the preceding proof, the signed permutations in BH
2k(2̄1̄, 1̄2̄) are exactly

the unsigned permutations in SH
2k. That is, the two sets are equal. The latter is enumerated, in [8,

Thm. 3.1], by the same recurrence relation that we prove here for the former.

Theorem 4.6 Let bj = |BD
j (2̄1, 21̄)|, but with b0 = 2, and let cj = |SH

j |, but with c1 = 2. Then, for

all k ≥ 1,

|BH
2k(2̄1, 21̄)| =

k−1∑
j=0

bjc2(k−j),

and

|BH
2k+1(2̄1, 21̄)| =

k∑
j=0

bjc2(k−j)+1.

Proof. To form an element π of BH
n (2̄1, 21̄), choose j < n

2 . Fill in the lower-left square region of size j
with a permutation avoiding 2̄1 and 21̄ and invariant under D. This consists of smaller square regions
of sizes j1, . . . jn each of which is a single-sign permutation invariant under D. Moving from left to
right, these smaller single-signed permutations alternate in sign, from one permutation to the next.
We can then �ll in the upper-right square region of size j as the image of the lower-left square under
D′. Finally, we �ll in the remaining central square region of size 2k−2j with a permutation of the sign
opposite to the squares incident upon it that is invariant under D and D′. This uniquely determines
π, and the formula follows. 2

We remark that the set SH
n , used in the preceding theorem, is the set of unsigned permutations of

n invariant under H, enumerated by [8, Thm. 3.1]. In particular, |SH
0 | = 1, |SH

2 | = 2, for all k ≥ 1

|SH
2k| = 2 · |SH

2(k−1)|+ 2(k − 1)|SH
2(k−2)|, (24)

and for all k ≥ 0
|SH

2k+1| = |SH
2k|. (25)

Theorem 4.7 For all n ≥ 0,

|BH
n (2̄1̄, 1̄2, 12̄)| = |SH

n |+
⌊(n−1)/2⌋∑

j=0

|SD
j |.

Proof. Let π ∈ BH
n (2̄1̄, 1̄2, 12̄). The number of possible π that have no barred dots is |SH

n |, because
none of the pattern restrictions a�ect nonbarred dots.

Now suppose that π has at least one barred dot. If there is a barred dot in π that is not on the
D diagonal, then this dot and its image under D form a 2̄1̄, a contradiction; thus, every barred dot in
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π is on the D diagonal. Since π avoids 1̄2, there cannot be a nonbarred dot anywhere above and to
the right of the �rst barred dot. Since π avoids 12̄, there cannot be a nonbarred dot anywhere below
and to the left of the last barred dot. The only remaining places to put nonbarred dots are in two
square regions in the upper-left and lower-right; the upper-left region consists of the boxes higher than
the highest barred dot and to the left of the leftmost barred dot, and the lower-right region is the
upper-left region's image under D. Given that the width of the upper-left region of nonbarred dots is
j, the number and placement of the barred dots is uniquely determined. The upper-left region is an
element of SD′

j , so the number of choices for it is |SD′
j | = |SD

j |. Since there is at least one barred dot
in this case, we take the sum of this over all j from 0 to ⌊(n − 1)/2⌋. Adding this to the result from
the case without barred dots, the required formula follows. 2

We remark that the set SH
n , used in the preceding theorem, is enumerated in (24) and (25). |SD

n |,
also in the preceding theorem, is the number of unsigned involutions of n. In particular, by [15, �3],
|SD

0 | = |SD
1 | = 1 and, for all n ≥ 2,

|SD
n | = |SD

n−1|+ (n− 1)|SD
n−2|. (26)

The following theorem gives two di�erent enumerations of a set.

Theorem 4.8 Let an = |BH
n (2̄1̄, 21̄, 2̄1)|. Then the following hold.

(i) For all n ≥ 0,

an = |SH
n |+

⌈n/2⌉∑
j=1

|SH
n−2j | · |BD

j−1(2̄1̄, 21̄, 2̄1)|,

where we use the convention |SH
−1| = 1.

(ii) a0 = 1, a1 = 2, and, for all n ≥ 2,

an = |SH
n |+

⌈n/2⌉∑
j=1

|SD
j−1| · an−2j ,

where we use the convention a−1 = 1.

Proof. (i) Let π ∈ BH
n (2̄1̄, 21̄, 2̄1). If π has no barred dots, then none of the restrictions apply, so

π can be any permutation in SH
n . If π has at least one barred dot, then let j be the column of the

rightmost barred dot in the left half (including the center column if n is odd). If the jth column's dot
were not on the D diagonal, then this dot and its image under D would form a 2̄1̄, which is forbidden;
thus, π(j) = j and (by R180 invariance) π(n+ 1− j) = n+ 1− j. The columns of π between column
j and column n+ 1− j have only nonbarred dots; further, π avoids 21̄ and 2̄1 if and only if the dots
between column j and column n+ 1 − j are also between row j and row n + 1 − j. Thus, the center
(n− 2j)× (n− 2j) square region of π is any element of SH

n−2j . (In the case where n− 2j = −1, there

is no center square region, so we set |SH
−1| = 1.)

Since π(j) = j, π avoids {2̄1̄, 21̄, 2̄1} if and only if the dots to the left of the jth column are below
the jth row. The D′ diagonal does not cut through the (j − 1)× (j − 1) square region that lies below
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and to the left of the jth column's dot, so this region must contain an element of BD
j−1. Since π is

invariant under R180, choosing this region in the lower-left determines the corresponding region in the
upper-right.

We then get the required formula by multiplying the |SH
n−2j | choices for the central square region

by the |BD
j−1| choices for the lower-right square region, summing over 1 ≤ j ≤ ⌈n/2⌉, and adding the

|SH
n | choices from the case where no dots in π are barred.

(ii) Let π ∈ BH
n (2̄1̄, 21̄, 2̄1). If π has no barred dots, then none of the restrictions apply, so π can

be any permutation in SH
n . If π has at least one barred dot, then let j be the column of the leftmost

barred dot. Just as in the proof of (i), π(j) = j and π(n+1−j) = n+1−j. Now, π avoids {2̄1̄, 21̄, 2̄1}
if and only if the dots between column j and column n+1−j are also between row j and row n+1−j.
Thus, the center (n − 2j) × (n − 2j) square region of π is any element of BH

n−2j(2̄1̄, 21̄, 2̄1), of which
there are an−2j choices. (In the case where n − 2j = −1, there is no center square region, so we set
a−1 = 1.)

The part of π to the left of column j has only nonbarred dots. Since π(j) = j, π avoids 21̄ and 2̄1
if and only if the dots to the left of column j are below row j. The D′ diagonal does not cut through
the (j − 1) × (j − 1) square that lies below and to the left of the jth column's dot, so this region
must contain an element of SD

j−1. Since π is invariant under R180, choosing this region in the lower-left
determines the corresponding region in the upper-right.

We then get the required formula by multiplying the an−2j choices for the central square region by
the |SD

j−1| choices for the lower-right square region, summing over 1 ≤ j ≤ ⌈n/2⌉, and adding the |SH
2k|

choices from the case where no dots in π are barred. 2

We remark that the preceding theorem used these sets: SH
2k, enumerated in (24); BD

n (2̄1̄, 21̄, 2̄1),
enumerated in (29); and SD

n , enumerated in (26).

Theorem 4.9 Let ak = |BH
2k(2̄1, 1̄2, 12̄, 21̄)|. Then a0 = 1, a1 = 4, and, for all k ≥ 2,

ak = 2ak−1 + 2(k − 1)ak−2.

Furthermore, for all k ≥ 1,
|BH

2k+1(2̄1, 1̄2, 12̄, 21̄)| = ak.

Proof. For the even case, the base cases are left as an exercise to the reader. For the inductive case,
note that if π ∈ BH

2k(2̄1, 1̄2, 12̄, 21̄), everything in π must have the same sign. So choose the location
of the leftmost dot, but do not choose the sign (this can be chosen in the base case). Remove the row
and column of the leftmost dot and its images under the elements of H, and the recurrence relation
follows.

For the odd case, we form a bijection to the evens by adding a middle row and column to each
π ∈ BH

2k(2̄1, 1̄2, 12̄, 21̄) and placing a dot of the same sign as everything else in π in the middle square.
2

Theorem 4.10 For all n ≥ 0,
|BH

n (2̄1̄, 2̄1, 21̄, 21)| = 2⌈n/2⌉.

Proof. Let π ∈ BH
n (2̄1̄, 2̄1, 21̄, 21). Everything in π must be increasing, and thus on the D diagonal.

We choose the sign of each dot on the left side of π (including the middle if n is odd), which then
determines the signs on the right side by the R180 invariance. 2
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Theorem 4.11 For all n ≥ 0, let an = |BH
n (2̄1̄, 2̄1, 1̄2̄, 21̄)|. Then a0 = 1, a1 = 2, a2 = 2, a3 = 3,

and, for all k ≥ 2,

a2k = 2a2k−2 + 2(k − 1)a2k−4

and

a2k+1 =
1

2
a2k + a2k−1 + (k − 1)a2k−3.

Proof. The base cases are left as an exercise to the reader.

Let π ∈ BH
n (2̄1̄, 2̄1, 1̄2̄, 21̄). In the case of even n, we can have no barred dots because any nonbarred

dot has at least 2 images under H, and π avoids 2̄1̄ and 1̄2̄. Thus, π is simply an unsigned permutation
invariant under H, and so we choose π(1) and remove the row and column of all its images under
H. If π(1) = 1 or n, then it has 2 images under H; otherwise it has 4. Thus, in this case, an =
2an−2 + (n− 2)an−4.

In the case of odd n, π still cannot have more than one bar, but in this case, there is a middle
square, which can be of either sign. If the middle square of π is a nonbar, then we can remove the
middle row and column and we have reduced the problem to the even case. Thus, there are an−1

permutations of this type. If the middle square of π is a bar, then everything else must be a nonbar,
and there cannot be anything in either the upper-left or lower-right quadrants; otherwise there is a 2̄1
or a 21̄. Thus, we �ll in an unsigned permutation invariant under D in the lower-left quadrant and �ll
in its image under D′ in the upper-right quadrant.

To get the recurrence relation, note that a2k+1 = a2k + |SD
k |, so |SD

k | = a2k+1 − a2k. The sequence
|SD

n | satis�es |SD
n | = |SD

n−1|+ (n− 1)|SD
n−2| (see [15, �3]). Then

a2k+1 = a2k + |SD
k−1|+ (k − 1)|SD

k−2| = a2k + a2k−1 − a2k−2 + (k − 1)(a2k−3 − a2k−4).

Now we note that by the even case, −a2k−2 − (k− 1)a2k−4 = −1
2a2k, which gives the desired result. 2

Theorem 4.12 For all n ≥ 1,

|BH
n (2̄1̄, 2̄1, 1̄2, 12̄, 21̄)| = |SH

n |+ 1.

Proof. Let π ∈ BH
n (2̄1̄, 2̄1, 1̄2, 12̄, 21̄) If π has a bar, then the entire permutation is increasing barred

entries. Otherwise, π is an element of SH
n . 2

We remark that the set SH
n , used in the preceding theorem, is enumerated in (24) and (25).

Theorem 4.13 For all n ≥ 2,

BH
n (2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄) = SH

n .

Proof. If π ∈ BH
n (2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄), then π has no barred entries, so π ∈ SH

n . If π ∈ SH
n , then of

course π has no barred entries, and the result follows. See (24) and (25) for enumeration. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Table 3, along with the other results from this section.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated BH

n (R) for
every R ⊆ B2.
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n R |BH
n (R)| Recurrence

2k
2k + 1

∅ ak = 4ak−1 + 4(k − 1)ak−2

bk = 2ak

n {2̄1̄} an = 3an−2 + (n− 2)an−4

n {2̄1̄, 21} 2⌈n/2⌉

n {2̄1̄, 12} 2⌈n/2⌉

2k
2k + 1

{2̄1̄, 1̄2̄} ak = 2ak−1 + 2(k − 1)ak−2

bk = 2ak

n {2̄1, 21̄} Theorem 4.6

n {2̄1̄, 1̄2, 12̄} |SH
n |+

∑⌊(n−1)/2⌋
j=0 |SD

j |
n {2̄1̄, 21̄, 2̄1} |SH

n |+
∑⌈n/2⌉

j=1 |SH
n−2j | · |BD

j−1(R)| an = |SH
n |+

∑⌈n/2⌉
j=1 |SD

j−1| · an−2j

2k
2k + 1

{2̄1, 1̄2, 12̄, 21̄} ak = 2ak−1 + 2(k − 1)ak−2

bk = ak

n {2̄1̄, 2̄1, 21̄, 21} 2⌈n/2⌉

2k
2k + 1

{2̄1̄, 2̄1, 1̄2̄, 21̄} ak = 2ak−1 + 2(k − 1)ak−2

bk = 1
2
ak + bk−1 + (k − 1)bk−2

n {2̄1̄, 2̄1, 1̄2, 12̄, 21̄} |SH
n |+ 1

n {2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄} |SH
n |

n {2̄1̄, 1̄2, 12̄, 21} 2

n {2̄1̄, 1̄2̄, 12, 21} 0 Note: the same is true for any S ⊇ R.

n {2̄1̄, 2̄1, 1̄2, 12̄, 21̄, 21} 2

n {2̄1̄, 2̄1, 1̄2, 12̄, 12, 21̄} 2

n {2̄1̄, 2̄1, 1̄2̄, 12, 21̄} 1

n {2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 12, 21̄} 1

2k
2k + 1

{2̄1̄, 1̄2̄, 12} 1
2

2k
2k + 1

{2̄1̄, 2̄1, 1̄2̄, 21̄, 21} 1
2

2k
2k + 1

{2̄1̄, 2̄1, 12, 21̄} k + 1

Table 3: Enumerations of signed permutations of length at least 4 that are invariant under H and avoid R.

5 Signed permutations invariant under D

Recall from our introduction that BD
n is the set of signed permutations of length n that are invariant

under the subgroup ⟨D⟩ = {e,D} of S. Also recall that applying D is the same as re�ecting across the
�/� diagonal (the D diagonal) and applying the bar operation. Equivalently, it is the same as taking

the group-theoretic inverse and applying the bar operation. In this section, we enumerate BD
n (R) for

each R ⊆ B2.

The ⟨D⟩ orbits of the dots in a diagram must consist of pairs of dots, so a signed permutation

of odd length cannot be invariant under D. That is, BD
2k+1 = ∅. Now it remains only to enumerate

BD
2k(R) for each R ⊆ B2.

We start by enumerating the permutations invariant under D with no pattern avoidance.

Theorem 5.1 For all k ≥ 0,

|BD
2k| =

(2k)!

k!
.
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Proof. The k = 0 case is easy to verify. Now let π ∈ BD
2k for k ≥ 1. There are 2(2k − 1) choices for

the �rst column's dot: 2k − 1 choices for its position (it cannot go on the D diagonal) and 2 choices
for its sign. This dot determines a dot in the bottom row, by the D invariance. Remove the row and
column of each of these two dots; what remains is in BD

2(k−1). Moreover, this process is invertible, up

to the choice of the �rst-column dot: given π′ ∈ BD
2(k−1), we can insert a dot into the �rst column and

insert its image under D. Thus, for all k ≥ 1,

|BD
2k| = 2(2k − 1)|BD

2(k−1)|.

The required formula follows by induction. 2

Egge [8, Def. 2.1 & Thm. 4.2] constructs a bijection between BD
n and S90

2n, de�ned as follows. Given

π ∈ BD
n , copy the n × n diagram of π into the lower-left quadrant of a 2n × 2n grid. Re�ect all of

the nonbarred dots across the grid's horizontal center line, moving them into the upper-left quadrant.
Then �ll in the right half of the 2n× 2n grid with a 180-degree rotation of the left half. The unsigned
version of the resulting permutation is in S90

2n.
Now we move on to sets with pattern avoidance.

Theorem 5.2 For all k ≥ 0,

|BD
2k(2̄1)| =

(2k)!

2kk!
.

Proof. If π ∈ BD
2k(2̄1), then the �rst dot must be nonbarred, since its image under D is in the bottom

row. Furthermore, the �rst dot cannot be on the diagonal. Thus, choose one of the 2k−1 other spaces
in the �rst column, and remove the rows and columns that are �lled. The rest of the permutation is
an element of BD

2(k−1)(2̄1), and the result follows by induction. 2

Theorem 5.3 For all k ≥ 0, let ak = |BD
2k(1̄2, 12̄)|. Then

ak = |Bk(1̄2, 12̄)|.

It follows that a0 = 1 and, for all k ≥ 1,

ak = k! +

k−1∑
j=0

(k − j)!aj .

Proof. Let π ∈ BD
2k(1̄2, 12̄), and suppose π has a dot in the lower-left quadrant. Then it must also

have a dot in the upper-right quadrant, along with its image under D. But this violates either 1̄2 or
12̄, so everything is in the upper-left and lower-right quadrants.

Since the D diagonal does not pass through either of these quadrants, we simply have to �ll in
a permutation in the upper-left quadrant that avoids 1̄2, 12̄ and then �ll in the lower-right quadrant
with its image under D. But this is just an element of Bk(1̄2, 12̄).

Thus, we have a bijection from BD
2k(1̄2, 12̄) to Bk(1̄2, 12̄): given an element of the former, the

upper-left quadrant is an element of the latter. We give a recurrence for Bk(1̄2, 12̄) in Lemma 3.5, and

this is the recurrence we need for BD
2k(1̄2, 12̄). 2
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Theorem 5.4 For all k ≥ 0,

|BD
2k(2̄1̄, 21)| =

(
2k

k

)
.

Proof. Let π ∈ BD
2k(2̄1̄, 21). Since π is invariant under D, π has k nonbarred dots and k barred dots.

We are thus choosing k of the 2k columns to have nonbarred dots, giving
(
2k
k

)
choices. The nonbarred

dots must be in increasing order to avoid 21, and so must be the barred dots to avoid 2̄1̄. Furthermore,
D̄ must map the ith nonbarred dot to the ith barred dot for each i. Therefore, given one of the

(
2k
k

)
arrangements of signs, π is uniquely determined. 2

Theorem 5.5 For all k ≥ 0,

|BD
2k(1̄2̄, 12)| =

(
2k

k

)
.

Proof. This proof is the same as the proof of Theorem 5.4, but with two modi�cations. First, the
nonbarred dots must be in decreasing order to avoid 12, and so must be the barred dots to avoid 1̄2̄.
Second, D̄ must map the ith nonbarred dot to the (k − i+ 1)th barred dot for each i. 2

Theorem 5.6 For all k ≥ 0,

|BD
2k(2̄1̄, 2̄1, 21)| = Ck,

the kth Catalan number.

Proof. Let π ∈ BD
2k(2̄1̄, 2̄1, 21). Then the barred dots of π are increasing, as are the nonbarred dots. If

there is a barred dot above the D diagonal, its image under D is a nonbarred dot, so this creates a 2̄1.
Thus, all the barred dots must be below the D diagonal and all the nonbarred dots must be above the
D diagonal. Choose k of the 2k columns to have nonbarred dots such that every pre�x of π contains
at least as many nonbarred dots as barred dots. Then if pj are the columns with nonbarred dots and
qj are the columns with barred dots, we must have π(pj) = qj and π(qj) = pj . Now because the pj
and qj are all distinct, and because there are k of each of them, there is exactly one dot in each row,
so the resulting object is a permutation. Additionally, π(pj) = qj and π(qj) = pj and these dots are
mapped to each other under D, so π is invariant under D. Furthermore, since pj < qj for each j, the
nonbarred dots are all above the diagonal. Thus, we have Ck permutations. 2

Theorem 5.7 For all k ≥ 0,

|BD
2k(2̄1, 1̄2, 12̄)| = k!.

Proof. If π ∈ BD
2k(2̄1, 1̄2, 12̄), then every nonbarred dot in π must be before and above every barred

dot. So, because there are exactly k nonbarred dots, they must all be in the upper-left quadrant. Thus,
we simply choose any unsigned permutation of the upper-left quadrant. 2

Theorem 5.8 For all k ≥ 0,

|BD
2k(1̄2̄, 1̄2, 12̄, 12)| = 2k.
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n R |BD
n (R)| Recurrence

2k ∅ (2k)!
k!

2k {2̄1} (2k)!
2kk!

2k {1̄2, 12̄} |Bk(1̄2, 12̄)| ak = k! +
∑k−1

j=0(k − j)!aj

2k {2̄1̄, 21}
(
2k
k

)
2k {1̄2̄, 12}

(
2k
k

)
2k {2̄1̄, 2̄1, 21} Ck

2k {2̄1, 1̄2, 12̄} k!

2k {1̄2̄, 1̄2, 12̄, 12} 2k

2k {21̄, 2̄1} 0 Note: the same is true for any S ⊇ R.

2k {1̄2̄, 2̄1̄, 12, 21} 0 Note: the same is true for any S ⊇ R.

2k {2̄1̄, 1̄2, 12̄, 21} 2

2k {2̄1̄, 2̄1, 1̄2, 12̄, 21} 1

2k {2̄1, 1̄2̄, 12} 1

2k {2̄1, 1̄2̄, 1̄2, 12̄, 12} 1

Table 4: Enumerations of signed permutations of length at least 4 that are invariant under D and avoid R.

Proof. These permutations must be strictly decreasing, but we can choose which of the dots on the
left side are barred. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Table 4, along with the other results from this section.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated BD

n (R) for
every R ⊆ B2.

6 Signed permutations invariant under D and D′

For this section, let W be the subgroup {e,R180, D,D′} of S. Recall from our introduction that
applying R180 is the same as taking the reverse�complement and applying the bar operation; D is the
same as re�ecting across the �/� diagonal (the D diagonal), or the same as taking the group-theoretic
inverse; and D′ = D◦R180 = R180◦D is the same as re�ecting across the �\� diagonal (the D′ diagonal)
and applying the bar operation. In this section, we enumerate BW

n (R) for each R ⊆ B2.
The W orbits of the dots in a diagram must consist of either 2 or 4 dots, depending whether the

dot is on the D diagonal. This means that a signed permutation of odd length cannot be invariant
under W , the reason being that it cannot be invariant under D′. That is, BW

2k+1 = ∅. Now it remains

only to enumerate BW
2k (R) for each R ⊆ B2.

We start by enumerating the permutations invariant under W with no pattern avoidance. We have
two di�erent formulas for this.

Theorem 6.1 (i) |BW
0 | = 1, |BW

2 | = 2, and, for all k ≥ 2,

|BW
2k | = 2 · |BW

2(k−1)|+ 2(2k − 2)|BW
2(k−2)|. (27)
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(ii) For all k ≥ 0,
|BW

2k | = 2k|SD
k |. (28)

Proof. (i) The base cases are left as an exercise to the reader. Let k ≥ 1, and let π ∈ BW
2k . Consider

the leftmost dot of π. It cannot be in the topmost box because then π would not be invariant under
D′. Remove the leftmost dot and its images under W ; if π(1) = ±1, then it has an orbit of size 2;
otherwise, the orbit is of size 4. Thus, the recurrence relation holds.

(ii) We could use purely algebraic methods to prove that 2k|SD
k | follows the recurrence relation

in (27), since |SD
k | itself follows a similar recurrence relation [see (26)]. However, we instead give a

combinatorial proof of (28).
For all n ≥ 0, let Jn be the set of signed permutations whose unsigned versions are invariant under

D. We can construct elements of Jn by giving signs to the entries of elements of SD
n . There are 2n

choices of signs for each element of SD
n , so |Jn| = 2n|SD

n |.
We construct a bijection from Jn to BW

2n as follows. Given π ∈ Jn, copy the n × n diagram of π
into the lower-left quadrant of a 2n × 2n grid. If two dots in the same D orbit have opposite signs,
then re�ect the pair across the grid's horizontal center line, putting it into the upper-left quadrant.
Then �ll in the right half of the 2n× 2n grid with a 180-degree rotation of the left half. Now �ip the
sign of all dots in the right half. It is easy to check that this map sends π to a signed permutation in
BW

2n. Since the process is invertible, it is a bijection. Therefore, |BW
2k | = |Jk| = 2k|SD

k |. 2

Now we move on to sets with pattern avoidance.

Theorem 6.2 |BW
0 (1̄2)| = |BW

2 (1̄2)| = 1 and, for all k ≥ 2,

|BW
2k (1̄2)| = |BW

2(k−1)(1̄2)|+ 2(k − 1)|BW
2(k−2)(1̄2)|.

Proof. The proof of Theorem 6.1 (i) also works here, with the exception that now we have no choice
of sign when we insert a dot. This is because inserting a barred dot anywhere in the far left column
would result in a 1̄2, with the bar's image under D′. So the present recurrence relation's coe�cients
are half what they are in the unrestricted case. 2

Theorem 6.3 For all k ≥ 0,
|BW

2k (1̄2̄, 12)| = 2k.

Proof. Let π ∈ BW
2k (1̄2̄, 12). For each entry in the �rst half of π, choose whether it is barred. There

are 2k ways to choose this, and this choice determines the placement of barred entries in the right half.
We will now prove inductively that, given the choice of bars, π is uniquely determined.

The base cases are easy to check. Now, consider π ∈ BW
2k (1̄2̄, 12) for k ≥ 2. Choose the bars'

placement in π, as described above; without loss of generality, we choose the �rst entry to be nonbarred.
To avoid 1̄2̄ and 12, we must put 2k as either the �rst nonbarred entry or the �rst barred entry. By
D′ invariance, π(1) ̸= 2k, and so 2k must be the �rst barred entry. We already chose the colors, so we
know that the �rst bar is on the jth entry of π, where 2 ≤ j ≤ k + 1. By W invariance, we now have
π(j) = 2k; π(2k) = j; π(2k − j + 1) = 1; and π(1) = 2k − j + 1.

Remove these four entries from π; let ρ be the remaining permutation. Note that ρ ∈ BW
2(k−2)(1̄2̄, 12).

By the inductive hypothesis, ρ is uniquely determined by a choice of bar placement, so let ρ inherit
the choice that we made for π. Now re-insert the 4 entries to recover π.
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Now π has been uniquely determined, and it is easy to check that π is still invariant under W . We
know by the inductive hypothesis that ρ has the required pattern restriction, but perhaps an entry of
ρ forms a forbidden pattern with the 2k in position j of π. Suppose this is the case. Then there must
be a barred entry before position j, a contradiction. So position j cannot be in a forbidden pattern.
Furthermore, any possible forbidden pattern that includes one of the other three initial entries can be
mapped by W to a forbidden pattern that includes position j, which would also be a contradiction.
Therefore, π really does obey the necessary restrictions. 2

Theorem 6.4 For all k ≥ 0,

|BW
2k (2̄1̄, 21)| = 2k.

Proof. Let π ∈ BW
2k (2̄1̄, 21). If π has a dot not on the D diagonal, then this dot, along with its image

under D, creates a 2̄1̄ or a 21. Thus, everything is on the diagonal of π, so we choose the colors of the
dots on the left half. The right half is determined by D′ invariance. 2

Theorem 6.5 Let ak = |BW
2k (2̄1, 21̄)|. Then, for all k ≥ 0,

ak = |BD
k (2̄1, 21̄)|.

Furthermore, ak is given by the recurrence relation a0 = 1, a1 = 2, and, for all k ≥ 2,

ak = 2ak−1 + kak−2 −
k−3∑
j=1

j · |SD
k−j−3|aj . (29)

Proof. Dukes and Mansour prove that the recurrence relation (29) enumerates BD
k (2̄1, 21̄) [5, Prop. 3.8].

Hence, we have only to prove that |BW
2k (2̄1, 21̄)| = |BD

k (2̄1, 21̄)|.
If π ∈ BW

2k (2̄1, 21̄) and there is a dot in the upper-left quadrant of π, then the image of this dot
under D′ is also in the upper-left quadrant, and its image under D is in the lower-right quadrant.
These two dots create a 2̄1 or a 21̄, so everything is in the lower-left and upper-right quadrants. Thus,
we �ll in a signed involution in the lower-left quadrant avoiding 2̄1 and 21̄, and �ll in the upper-right
quadrant using D′. 2

We remark that the preceding theorem used the set SD
n , the number of unsigned involutions, as

enumerated in (26).

Theorem 6.6 For all k ≥ 0,

|BW
2k (1̄2̄, 1̄2, 12)| =

(
k

⌊k/2⌋

)
.

Proof. For this proof, let Ak = BW
2k (1̄2̄, 1̄2, 12), let H = {e,R180, D,D′} ⊆ D4, and let

Dk = {π ∈ SH
2k(123) : the diagram of π has no dot on the D′ diagonal}.

The enumeration of Ak has three steps. I. We construct a bijection between Ak and Dk. II. We �nd
a recursive formula that enumerates Dk. III. We use ordinary generating functions to show that the
recursive formula yields the zigzag central binomial coe�cients,

(
k

⌊k/2⌋
)
.
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I. Given a signed permutation π ∈ Ak, let |π| be the unsigned version of π. Since π is invariant
under W , the unsigned |π| is invariant under H. If |π| were to contain 123, then by the pigeonhole
principle two of the dots in the 123 would have the same sign in π, which would make π fail to avoid
12 or 1̄2̄; thus, |π| avoids 123. Because of the D′ invariance, no dot in π can be on the D′ diagonal, so
the same is true for |π|. Thus, π 7→ |π| is a map from Ak to Dk.

If π ∈ A had a barred dot somewhere below its D′ diagonal, then this dot would form a 1̄2 with its
image under D′, and this is forbidden; thus, every dot below the D′ diagonal is nonbarred, and every
dot above the D′ diagonal is barred. So, given the positions of the dots of π, the signs are uniquely
determined. This means we can invert the map de�ned above: given |π| ∈ Dk, π is the result of putting
bars on the dots of |π| that are above the D′ diagonal. Therefore, the map is a bijection between Ak

and Dk.
So, to count Ak, we need only count Dk. (For the rest of the proof, we will denote an element of

Dk as π rather than |π|.)

II. For 1 ≤ j ≤ k, let Dj
k be the set of π ∈ SH

2k(123) such that column j of π is the rightmost

left-half column that has its dot on the D′ diagonal. That is, if π ∈ Dj
k, then column j of π has its dot

on the D′ diagonal, but no column of π between j and 2k − j has its dot on the D′ diagonal.
Let π ∈ Dj

k. If π had a dot below and to the left of the jth-column dot, then these two dots
would form a 123 with the former's image under D′, and this is forbidden; thus, every dot to the left
of the jth-column dot is above it. This requires that the upper-left (j − 1) × (j − 1) grid contain
an unsigned permutation invariant under D′ that avoids 123. The reverse map is a natural bijection
between the set of such permutations and the set SD

j−1(321). Simion and Schmidt [17, Prop. 5] prove

that |SD
n (321)| =

(
n

⌊n/2⌋
)
; thus, there are

( j−1
⌊(j−1)/2⌋

)
possibilities for the upper-left (j−1)× (j−1) grid.

The remaining dots of π must be in the 2(k − j)× 2(k − j) grid in the center. Column j had the
last dot that was on the D′ diagonal, so none of these dots are on the D′ diagonal. This means that
we have an unsigned permutation in Dk−j , the subset of S

H
2(k−j)(123) with no dot on the D′ diagonal.

Now we can write a formula for | Dj
k |:

| Dj
k | =

(
j − 1

⌊(j − 1)/2⌋

)
| Dk−j |. (30)

Now, to enumerate Dk, we can count the elements of SH
2k(123) and subtract all of the elements that

have a dot on the D′ diagonal. Using (30) and the fact that |SH
2k(123)| = 2k [8, Thm. 3.8],

| Dk | = |SH
2k(123)| −

k∑
j=1

| Dj
k |

= 2k −
k−1∑
j=0

(
k − j − 1

⌊(k − j − 1)/2⌋

)
| Dj |.

Therefore, letting ak = | Dk |, we have a0 = 1 and, for all k ≥ 1,

ak = 2k −
k−1∑
j=0

(
k − j − 1

⌊(k − j − 1)/2⌋

)
aj . (31)
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The unique sequence that follows this recurrence relation is the sequence that enumeratesBW
2k (1̄2̄, 1̄2, 12).

III. We now prove that ak =
(

k
⌊k/2⌋

)
using ordinary generating functions. Let A(x) =

∑∞
k=0 akx

k,

the generating function of ak. We multiply recurrence relation (31) by xk and sum over all k ≥ 1:

A(x) = 1 +
∞∑
k=1

2kxk −
∞∑
k=1

k−1∑
j=0

(
k − j − 1

⌊(k − j − 1)/2⌋

)
· aj

xk

=

∞∑
k=0

2kxk − x

[ ∞∑
k=0

(
k

⌊k/2⌋

)
xk

]
A(x).

It is easy to check that the zigzag central binomial coe�cients have generating function 1+2x−
√
1−4x2

2x
√
1−4x2

.

Substituting this, as well as substituting A(x) and
∑

k≥0 2
kxk = 1/(1− 2x), yields the following:

A(x) =
1

1− 2x
− 1 + 2x−

√
1− 4x2

2
√
1− 4x2

A(x).

Finally, solving for A(x) and simplifying yields:

A(x) =
1 + 2x−

√
1− 4x2

2x
√
1− 4x2

,

the same generating function as the zigzag central binomial coe�cients. Therefore, ak =
(

k
⌊k/2⌋

)
. 2

Theorem 6.7 Let ak = |BW
2k (2̄1, 1̄2, 21̄)|. Then a0 = a1 = 1 and, for all k ≥ 2,

ak = ak−1 + (k − 1)ak−2.

Proof. The base cases are left as an exercise to the reader. If k ≥ 2, and π ∈ BW
2k (2̄1, 1̄2, 21̄), the

nonbarred dots of π must all be before and lower than the barred dots; since exactly half of the dots
are barred, they must be in the lower-left quadrant. Therefore, we simply �ll in the lower-left quadrant
with an element of SD

k and then use D′ to �ll in the upper-right quadrant.
Thus, ak = |SD

k |, the number of unsigned involutions of k. The recurrence relation is the same as
that given for |SD

k | in equation (26). 2

Theorem 6.8 For all k ≥ 0,
|BW

2k (2̄1̄, 2̄1, 21̄, 21)| = 2k.

Proof. Let π ∈ BW
2k (2̄1̄, 2̄1, 21̄, 21). Then everything in π is increasing, (and thus on the D diagonal),

so we choose the signs of the dots in the left half; the right half is now determined by D′ invariance. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Table 5, along with the other results from this section.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated BW

n (R) for
every R ⊆ B2.
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n R |BW
n (R)| Recurrence

2k ∅ 2k|SD
k | ak = 2ak−1 + 2(2k − 2)ak−2

2k {1̄2} ak = ak−1 + 2(k − 1)ak−2

2k {1̄2̄, 12} 2k

2k {2̄1̄, 21} 2k

2k {2̄1, 21̄} |BD
k (2̄1, 21̄)| ak = 2ak−1 + kak−2 −

∑k−3
j=1 j · |SD

k−j−3|aj
2k {1̄2̄, 1̄2, 12}

(
k

⌊k/2⌋
)

2k {2̄1, 1̄2, 21̄} ak = ak−1 + (k − 1)ak−2

2k {2̄1̄, 2̄1, 21̄, 21} 2k

2k {1̄2, 12̄} 0 Note: the same is true for any S ⊇ R.

2k {1̄2̄, 2̄1̄, 12, 21} 0 Note: the same is true for any S ⊇ R.

2k {2̄1, 1̄2̄, 12, 21̄} 2

2k {2̄1, 1̄2̄, 1̄2, 12, 21̄} 1

2k {2̄1̄, 1̄2, 21} 1

2k {2̄1̄, 2̄1, 1̄2, 21̄, 21} 1

Table 5: Enumerations of signed permutations of length at least 4 that are invariant under W and avoid R.

7 Signed permutations invariant under D and D′

For this section, letH be the subgroup {e,R180, D,D′} ofS. Recall from our introduction that applying
D is the same as re�ecting across the �/� diagonal (the D diagonal) and applying the bar operation.
Equivalently, it is the same as taking the group-theoretic inverse and applying the bar operation. Also
recall that R180 is the same as taking the reverse�complement, and D′ = D ◦ R180 = R180 ◦D is the
same as re�ecting across the �\� diagonal (the D′ diagonal) and applying the bar operation. In this

section, we enumerate BH
n (R) for each R ⊆ B2.

For π ∈ BH
n , no dot in π can be mapped to itself by D nor by D′, since these are sign-�ipping

operations. This means that π cannot have dots on either of its diagonals; in particular, there cannot
be a central dot. Then no dot in π can be mapped to itself by R180. Thus, each of the ⟨H⟩ orbits of
dots in π must contain exactly 4 dots. So BH

n = ∅ for any n ̸≡ 0 (mod 4). Thus, it remains only to

enumerate BH
n (R) for n ≡ 0 (mod 4).

We start by enumerating the permutations invariant under H with no pattern avoidance.

Theorem 7.1 For all k ≥ 0,

BH
4k =

2k(2k)!

k!
.

Proof. The case with k = 0 is easy to verify. Now, given a signed permutation in BH
4k for k ≥ 1,

look at where the dot in the �rst column is. No dot can be on either of the two diagonals, so there
are 4k − 2 = 2(2k − 1) choices for its position and 2 choices for its sign. So there are 4(2k − 1)
choices for the �rst column. This dot's orbit under H is of size 4, so choosing one dot determines 4
dots in all. If we remove the row and column of each of these 4 dots, then what remains is a signed
permutation in BH

4(k−1). Moreover, this process is invertible up to choice of the leftmost column's dot:
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given π′ ∈ BH
4(k−1), we can insert a dot somewhere on the far left and then insert the three other dots

that are determined by the H invariance condition. Thus,

|BH
4k| = 4(2k − 1)|BH

4(k−1)|

for all k ≥ 1. The required formula follows by induction. 2

Now we move on to sets with pattern avoidance.

Theorem 7.2 For all k ≥ 0, we have

|BH
4k(2̄1̄, 21)| =

(
2k

k

)
.

Proof. Let π ∈ BH
4k(2̄1̄, 21), and suppose π has a dot in the upper-left quadrant. Then the image under

R180 of this dot is in the lower-right quadrant of π, and this creates a 2̄1̄ or a 21. Thus, everything
is in the lower-left and upper-right quadrants, so we choose a permutation for the lower left quadrant
avoiding 2̄1̄ and 21 and invariant under D, and then �ll in its image under D′ in the upper-right
quadrant. There are

(
2k
k

)
ways to do this, by Theorem 5.4. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Table 6, along with the other results from this section.

n R |BH
n (R)|

4k ∅ 2k(2k)!
k!

4k {2̄1̄, 21}
(
2k
k

)
4k {2̄1, 21̄} 0

4k {1̄2, 12̄} 0

4k {1̄2̄, 2̄1̄, 12, 21} 0

Table 6: Enumerations of signed permutations of length at least 4 that are invariant under H and avoid R.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated BH

n (R) for
every R ⊆ B2.

8 Signed permutations invariant under R90 and signed permutations
invariant under R90

Let B90
n be the set of signed permutations of length n that are invariant under the subgroup ⟨R90⟩ =

{e,R90, R180, R270} of S. Similarly, let B90
n be the set invariant under ⟨R90⟩ = {e,R90, R180, R270} of

S. In this section, we enumerate B90
n (R) and B90

n (R) for each R ⊆ B2.
For π ∈ B90

n , each of the ⟨R90⟩ orbits of dots in π must contain exactly 4 dots, with the possible
exception of a central dot which is in an orbit by itself. It follows that B90

n = ∅ for any n ≡ 2 or 3

(mod 4). For π ∈ B90
n , the same is true, except that there cannot be a dot in the center in an orbit by

itself. So B90
n = ∅ for any n ̸≡ 0 (mod 4). Thus, it remains only to enumerate B90

n (R) for n ≡ 0 or 1

(mod 4) and to enumerate B90
n (R) for n ≡ 0 (mod 4).
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Theorem 8.1 For all k ≥ 0,

|B90
4k| = |B90

4k| =
2k(2k)!

k!
and

|B90
4k+1| = 2 · |B90

4k| =
2k+1(2k)!

k!
.

Proof. It is easy to verify the cases where k = 0. Now, given π ∈ B90
4k with k ≥ 1, choose a dot to go in

the �rst column. No corner box can have a dot in it, so there are 2(4k−2) choices for the �rst column:
4k− 2 position choices and 2 signs. By the R90 invariance of π, this dot determines one dot in the last
column, one in the bottommost row, and one in the topmost row. If we remove the row and column
of each of these four dots, then what remains is in B90

4(k−1). Moreover, this process is invertible, up to

choice of the leftmost column's dot: given π′ ∈ B90
4(k−1), we can insert a dot somewhere on the far left

and then insert the three other dots that are determined by the R90 invariance condition. Thus, for
all k ≥ 1,

|B90
4k| = 2(4k − 2)|B90

4(k−1)|.
The required formula follows by induction.

To prove that |B90
4k| = |B90

4k|, note that the following is a bijection: given π ∈ |B90
4k|, �ip the sign on

all dots in the upper-left and lower-right quadrants.
Let π ∈ B90

4k+1 for any k. Because of the R180 invariance, there must be a dot in the central box of
the diagram, with 2 choices for its sign. Remove the row and column of this dot; what remains is in
B90

4k. Therefore, |B90
4k+1| = 2 · |B90

4k|. 2

Now we move on to sets with pattern avoidance.

Theorem 8.2 For all k ≥ 1, we have

|B90
4k(2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄)| = |B90

4k+1(2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄)| =
(2k)!

k!
, (32)

|B90
4k(2̄1̄, 1̄2̄)| =

(2k)!

k!
and |B90

4k+1(2̄1̄, 1̄2̄)| = 2 · (2k)!
k!

, (33)

and

|B90
4k(2̄1, 1̄2, 12̄, 21̄)| = |B90

4k+1(2̄1, 1̄2, 12̄, 21̄)| = 2 · (2k)!
k!

. (34)

Proof. For (32), if π ∈ B90
n (2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄), then every dot in π is nonbarred. Thus, each element

of |B90
4k(2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄)| and |B90

4k(2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄)| corresponds to 2k elements of |B90
4k| and

|B90
4k+1|, respectively, by changing every dot to a nonbarred dot.
The proof of (33) is the same as that of equation (32) except that in the 4k+1 case we can choose

the sign of the center dot. The proof of (34) is the same as that of (32) except that either all the dots
are barred or all of the dots are nonbarred. 2

Here, we look at the only nonempty set of patterns to avoid that is nontrivial in conjunction with
R90.

Theorem 8.3 For all k ≥ 1,

|B90
4k(2̄1̄, 12)| =

(
2k

k

)
.
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Proof. Let π ∈ B90
4k(2̄1̄, 12). If there were a barred dot in the upper-left or lower-right quadrant of π,

then it would form a 2̄1̄ with its image under R180, which is forbidden; thus, all of the barred dots of
π are in the lower-left quadrant and the upper-right quadrant. Similarly, the nonbarred dots are in
the other two quadrants. Choose k of the 2k columns in the left half of π to have barred dots and
the others to have nonbarred dots; this determines the right half's columns by R180. Furthermore,
because π is invariant under R90, the indices of columns containing barred dots are the indices of the
rows containing nonbarred dots, so place the barred dots in increasing order, which determines the
nonbarred dots in decreasing order. 2

The rest of the results in this section are more straightforward, so we leave their proofs as exercises
to the reader. They are listed in Tables 7 and 8, along with the other results from this section.

n R |B90
n (R)|

4k
4k + 1

∅
2k(2k)!

k!
2k+1(2k)!

k!

4k
4k + 1

{2̄1̄, 2̄1, 1̄2̄, 1̄2, 12̄, 21̄} (2k)!
k!

4k
4k + 1

{2̄1̄, 1̄2̄}
(2k)!
k!

2 · (2k)!
k!

4k
4k + 1

{2̄1, 1̄2, 12̄, 21̄} 2 · (2k)!
k!

n {2̄1̄, 1̄2̄, 12, 21} 0

Table 7: Enumerations of signed permutations of length at least 4 that are invariant under R90 and avoid R.

n R |B90
n (R)|

4k ∅ 2k(2k)!
k!

4k {2̄1̄, 12}
(
2k
k

)
4k {2̄1, 21̄} 0

4k {1̄2̄, 2̄1̄, 12, 21} 0

Table 8: Enumerations of signed permutations of length at least 4 that are invariant under R90 and avoid R.

Every R ⊆ B2 that has not been explicitly used as a pattern-avoidance set in this section is
equivalent by Lemma 1.1 to one of the sets that has been. Thus, we have now enumerated B90

n (R) and

B90
n (R) for every R ⊆ B2.

9 Avoiding longer patterns

Now that we have completed the task of enumerating BH
n (R) for all H ≤ S and all R ⊆ B2, we present

two sporadic results that are applicable in certain cases where R is not a subset of B2.

Theorem 9.1 Let S be a set of permutations whose entries are all nonbarred, let T be a set of permu-
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tations whose entries are all barred, and let H ≤ D4 be one of the following subgroups:

{e}, {e,D}, {e,R180}, {e,R180, D,D′}, {e,R90, R180, R270}.

Then, for all n ≥ 0,

|BH
n (S ∪ T )| =

n∑
j=0

A(n, j,H)|SH
j (S)||SH

n−j(T )|,

where

A(n, j,H) =



(
n
j

)2
if H = {e},(

n
j

)
if H = {e,D},(⌊n/2⌋

⌊j/2⌋
)2
χ(j is even or n− j is even ) if H = {e,R180},(⌊n/2⌋

⌊j/2⌋
)
χ(j is even or n− j is even ) if H = {e,R180, D,D′} or {e,R90, R180, R270}.

Proof. In every case, we can construct every permutation in BH
n (S ∪ T ) uniquely in the following way.

First, choose a permutation π of size j with no barred entries that avoids S and a permutation ρ of
size n − j with no nonbarred entries that avoids T . We intertwine these permutations by choosing
the rows and columns for π and leaving the remaining rows and columns for ρ. Since no entry in any
pattern in S is barred and π avoids S, the resulting permutation also avoids S. Similarly, the resulting
permutation also avoids T . Thus, we must determine how many ways we can intertwine π and ρ to
create a permutation σ �xed by H.

If H = {e}, then we can choose the rows and columns for π arbitrarily. If H = {e,D}, then we
can choose the rows for π, and this determines the columns.

If H = {e,R180}, then if j and n− j are both odd, they both have an entry in their middle square,
which must occupy the middle square of σ in order for σ to be �xed by H. However, σ does not have
a middle square (and certainly not two), so this is impossible. If at most one of j and n − j is odd,
then remove the middle square (if it exists) from either π or ρ. Then choose the j

2 rows in the lower

half and the j
2 columns in the left half for π. This determines the columns on the right half and the

rows in the upper half. Finally, if there was a middle square for either π or ρ, insert it into the middle
of σ.

If H = {e,R180, D,D′} or {e,R90, R180, R270}, then we can make a similar argument except that
we choose only the rows for π. 2

Signed permutations can be thought of as two-colored permutations, so the natural generalization is
to enumerate sets of r-colored permutations for arbitrary r. Some work has been done on this already.
For example, Mansour [11] enumerates the r-colored permutations that avoid ρ for any colored pattern
ρ of length 2. Bagno, Garber, and Mansour [1] study the joint distribution of �xed points and a
certain type of exceedance on r-colored involutions, and then Mansour and Sun [13] generalize this to
r-colored permutations σ for which σm is the identity. Egge [7] enumerates r-colored permutations and
involutions with some particular pattern avoidances, generalizing some earlier results about Chebyshev
polynomials.

Here, we extend the results of Mansour and enumerate rSn(ρ), where rSn is the set of r−colored
permutations of n and |ρ| = k(k − 1) . . . 321 for some k. First, we need a de�nition.
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Definition 9.2 Let T (r, k) be the generating tree with labels (n, a0 = 0, a1, . . . , ak), and root node
(0, 0,∞, . . . ,∞). The rules for the children of a node (n, a1, . . . , ak) are as follows.

• For each j < k, the node with label (n, a0, a1, . . . , ak) has (r − 1)(aj − aj−1) children with label
(n+ 1, a0, a1, . . . , aj , aj+1 + 1, . . . , ak + 1)

• For each j < k−1, m ≤ aj −aj−1, the node with label (n, a0, a1, . . . , ak) has one child with label
(n+ 1, a0, a1, . . . , aj , aj +m,aj+2 + 1, . . . , ak + 1).

Theorem 9.3 If ρ ∈ rSk and |ρ| = k(k − 1) . . . 21, then the generating tree for rSn(ρ) is isomorphic

to T (r, k).

Proof. Let T be the generating tree for rSn(ρ). For each π ∈ rSn(ρ), we create the label (n, a0, a1, . . . , ak)
in the following way. Let n be the length of π and let a0 = 0. Further, for 1 ≤ j ≤ k, let aj denote
the smallest number so that the length-aj pre�x of π contains the length-j pre�x of ρ. If no such
number exists, let aj = ∞. By this de�nition, the root nodes of T and T (r, k) are the same. Now let
v = (n, a0, a1, . . . , ak) be a node in T . Then, to get the leaves of v we can add a dot of some color to
the bottom of π in column c. Since the aj are distinct, there exists a j so that aj < c ≤ aj+1. We have
two cases. If the added dot is the same color as the (j+1)th entry of ρ, then the label of the resulting
child is (n + 1, a0, a1, . . . , aj , c, aj+2 + 1, . . . , ak + 1), and there is one way this can happen for each
value of c. We prune this child if j + 1 = k because that corresponds to a permutation containing ρ.
If the added dot is a di�erent color from the (j + 1)th entry of ρ, then the label of the resulting child
is (n+1, a0, a1, . . . , aj , aj+1 +1, . . . , ak). There are (r− 1)(aj − aj−1) ways to do this for each j. Now
the result follows. 2

Corollary 9.4 If ρ ∈ rSk and |ρ| = k(k − 1) . . . 21, then

|rSn(ρ)| =
n∑

j=0

(
n

j

)2

bj,kj!(r − 1)j ,

where bn,k = |Sn(k(k − 1) . . . 21)|.

Proof. First suppose that ρ = k0(k−1)0 . . . 2010. We can construct π ∈ rSn(ρ) uniquely in the following
way. Let 0 ≤ j ≤ n. Choose a 1-color permutation of length j avoiding j(j − 1) . . . 21, and choose the
j rows and columns for this permutation in π. Then, choose a permutation for the remaining n − j
rows and columns of π, and for each of these entries, choose one of the remaining r − 1 colors. Now
reindex and note that

(
n
j

)
=

(
n

n−j

)
, and the result follows.

For other cases, the formula follows because the generating tree for rSn(ρ) is identical to the
generating tree for rSn(k

0(k − 1)0 . . . 2010). 2

Gessel [9] uses symmetric functions to obtain generating functions for bn,k as determinants of
matrices of Bessel functions, and then uses these generating functions to �nd explicit formulas for bn,k
for small values of k. For instance, it is well-known that

bn,3 = Cn =
1

n+ 1

(
2n

n

)
,
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and Gessel also shows that

bn,4 = 2

n∑
j=0

(
2j

j

)(
n

j

)2 3j2 + 2j + 1− n− 2jn

(j + 1)2(j + 2)(n− j + 1)
.

Larger values of k would give much more complicated formulas for bn,k, and Gessel does not consider
these values explicitly.

10 Open questions

We prove several of our results algebraically using generating functions, but for these we have been
unable to �nd combinatorial proofs. For many such results, the formula is simple enough that the
existence of a combinatorial interpretation would not be surprising. For instance, in Theorem 3.9, we
use generating trees and the kernel method to show that B180

2k (2̄1̄, 2̄1, 21) is enumerated by the central
binomial coe�cients. In Theorem 6.6, we use generating functions to show that BW

2k (1̄2̄, 1̄2, 12) is
enumerated by the zigzag central binomial coe�cients. In Theorem 2.2(iii), we enumerate B180

2k (2̄1̄) by
a simple two-term recurrence relation. In this last example, the second term of the recurrence relation
is subtracted, which suggests that a combinatorial argument would involve overcounting a set and then
removing the objects that were overcounted.

Recent developments in tableau combinatorics may be applicable to signed permutations. Stein-
grímsson and Williams [19] introduced permutation tableaux, so named because they correspond to
permutations by a bijection that nicely translates several statistics. That paper also proves results
regarding equidistribution of certain generalized pattern statistics on permutations, by establishing a
second bijection between permutation tableaux and permutations. It is natural to form signed permu-
tation tableaux by giving a sign to each border segment of an unsigned permutation tableau, and it
would be interesting to see if any of the results from Steingrímsson and Williams [19] can carry over
to signed permutation tableaux.

Additionally, Corteel andWilliams [3] introduced staircase tableaux, named for their staircase shape.
Each box in this tableau may contain an α, β, γ or δ, or it may be left blank, according to certain
rules. Corteel, Stanley, Stanton, and Williams [4] construct a bijection between staircase tableau
and four-colored permutations. This bijection naturally maps a certain class of staircase tableaux�
namely, those whose diagonal boxes contain only α and δ�to signed (or two-colored) permutations. A
staircase tableau can be antisymmetric, in the sense that each α or γ is diagonally re�ected to a δ or
β respectively, and vice versa. Antisymmetric staircase tableaux correspond to permutations that are
invariant under R180 before the entries are colored, but when we take colors into account there is no
nontrivial symmetry under which this permutation is invariant. Perhaps this bijection can be modi�ed
such that the colors of the resulting permutation behave more nicely when the staircase tableau is
antisymmetric. [There is a similar result for symmetric permutation tableaux (see [2, �2]), which does
generalize easily to signed permutations.]

We give a result about pattern-restricted r-colored permutations in Corollary 9.4, but this does
not involve symmetries. Perhaps some of our results for signed permutations with symmetries can
be generalized to r-colored permutations with symmetries. It would be interesting to study pattern-
restricted r-colored permutations that are invariant under various subgroups of the symmetry group
D4 ⊕ Zr or D4 ⊕ Sr. Admittedly, the situation becomes much more complicated with r colors�there
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are not only exponentially more permutations, but also more symmetries. A natural �rst step would
be to examine r-colored permutations that are invariant under R180, the reverse�complement map.
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