$$
\frac{(\frac{1}{2} + \frac{1}{2} + \frac{1}{
$$

 (d) $X = \left\{\begin{array}{c|c} x & x \neq 0 \\ x \neq 0 & x \neq -1 \end{array}\right\}$ $\frac{x}{1+x}$ \mathbf{V} \times ₹ -1 $x > -1$

 $sup(X) = 1$
 $inf(X)$ does not exist

(g) $X = \{ .3, .33, .333, .3333, .3333, ...\}$ Note that $\frac{1}{3} = 0.333333333333333...$ $\hat{int}(\chi) = .3$ $Sup(x) = \frac{1}{3}$ ۱ 97 Free, $\hbar\omega$ $f_{\text{ob}}t$ mi α \sim 9

remum

 $5J\rho y$

 α

② (proof by contradiction) Let XER with x70. Suppose also that $x \leq \epsilon$ for every $\Sigma > 0$. We will show that $x=0$. Suppose $sinaw + ac + x > 0.$ Then $\epsilon=\frac{x}{2}$ > 0. But by assumption $\left\lfloor \frac{2}{\epsilon} \right\rfloor$ then we Would $have x \leq \epsilon$ But then ✗ $\leq \frac{\times}{2}$. Buf then $X - C$ $X \leq 0.$
This implies that $Z \leq 0.$ This gives $x \leq 0$ which contradicts $X > 0$. Hence X70 c_4 can't be the case and so and so $x=0$.

3) Suppose a and b are both
express of S.
Thus, a and b are both
upper bounds for S.
Since a is a supremum for S
and a is an upper bound
we have that
$$
a \le b
$$
.
Since b is a supremum for S
and a is an upper bound
and a is an upper bound
for S, by def of supremum,
we have that $b \le a$.
Since $a \le b$ and $b \le a$ we
have that $a = b$.

(4) We are given that b is an upper bound for S and that b \in S.

\n[et's show that b = sup(S).

\n(i) We already have that b is an upper bound for S.

\n(ii) left's shown that b is the least left of S.

\n[iii) left c be another upper bound for S.

\n[let c be another upper bound for S.

\nThen,
$$
x \leq c
$$
 for all $x \in S$.

\nThen, $x \leq c$ for all $x \in S$.

\nSince b \in S, this gives b \in C.

\nThus, b is the least upper bound for S.

\nBy (i) and (iii), b = sup(S).

 $(5)(a)$ Proof 1) - This method uses the We are given that $a=sup(A)$ and $b=sup(B) exist.$ We are also given that $A \cap B \neq \emptyset$. Claim o ANB is bounded from above Note that $x \le a$ for all $x \in A$
because a is an upper bound f or A . this means that $Sine$ $ANB \subseteq A$ all $x \in A \cap B$. $x \leq a$ for Hence a is an upper bound

Similarly one can show that lawy one ear snow f_0 ANB. $\int h \cup s$ $x \in \alpha$ for all $x \in A \cap B$ and $x \leq b$ for all $x \in A \cap B$. Therefore, $if c=min { {a,b} }$ then $x \leq c$ for all $x \in A$ NB. $\big\backslash$ 0 $\big\}$ $c=min{$ a,b $\}$ $= min \{a,b\}$
= min { sup (A), sup (B)} is an upper bound for ANB . Because AAB is bounded from above we know that sup (AAB) exists.

Since sup (ANB) is the supremum of $A \cap B$ and c is an upper bound for AAB, by the def of supremum we have that $\sup_{x\in\mathbb{R}}(A\cap B)\leq C.$ $\begin{bmatrix} 5 \end{bmatrix}$ supremum is the least
bound upper bound

Thus, sup $(ADB) \leq min \{supp(A), sup(B)\}.$ ☒

sper bound ear buund POSe hen 1 hus This method uses the $V = \sup Q$ S_{\circ} Useful suppliest fact P roof 21 Since AMB SA and A is bounded from above, thus $5)(a)$ true We know that AMB is bounded from above. Hence X= sup (ANB) exists. Let $x_A = \sup f(A)$, Let's show that $x \leq x_A$. Suppose that X7XA. Then $x-x_0>0.$ Since \times is the supremum of $A \cap B$, there exists
 $A \cap B$ such that $x - \epsilon < \epsilon$ S_{0} , $X_{A} < \lambda \leq X$ (since $X - \epsilon = X_{A}$). This contradicts the fact that $sup(A) = X_A$ since $l \in A$. when $\cos\theta = \sin\theta$ and $\sin\theta = \sin\theta$ and $\sin\theta = \sin\theta$ and $\cos\theta = \sin\theta$ and $\cos\theta = \sin\theta$

 $G(b) (FAISE)$ Let $A = [5, 27) \cup (-1, 3]$ $B = (-1, 5)$. Then $A \cap B = (-1, 3)$

 $Nole$: $Sup(A) = 27$ $sup(B)=5$ $Sup(AAOB) = 3$

 $B = \begin{bmatrix} 1, 5 \end{bmatrix}$

 $i^{n}f(r)=inf(0)=1$

 $BytA \neq B$

 $A = (1, 5)$ $sup(A) = sup(A) = 5$

 $G(c)[Tive]$ This method vses the $Proof 1$ and $b=sv\rho(\beta)$. Let $a = s v \rho (A)$ for this proof that We will assume $a \leq b$. If we assumed b $\leq a$ the same proof
would work with a & b interchanged. Since asb we have that $b = max\{Sup(A),Sup(B)\}.$ Claim 1: b is an upper bound for LIVE X E A VB.
Let $x \in A$ VB.
Tf $x \in B$, then $x \leq a \leq b$.
Tf $x \in B$, then $x \leq b$. (since F

Thus no multiple the case we have
\n
$$
\frac{1}{2}
$$
 when $x \leq b$.
\nThus, b is an upper bound for
\nsup (AUB).
\n $\boxed{Claim 1}$

Claim 2: b is the least upper bound for AVB
bound for AVB
Svppose c is ano+hev upper bound
The AVB.
Then, $x \in c$ for all $x \in AVB$.
This implies that both $x \in A$
$x \in c$ for all $x \in A$
and $x \in c$ for all $x \in B$

Thus c is an upper bound for A
\nand c is an upper bound for B.
\nThus, a \n
$$
\leq c
$$
 and b \n $\leq c$
\nby del d, superman and
\nSince a = sup (A) and b = sup (B).
\nThus, max $\{a,b\} \leq c$.
\nThus, b \n $\leq c$.
\nThus, b \n $\leq c$.
\nSo, b is the least upper
\nso, b is the left upper
\n $\{c \mid c \mid a \in \mathbb{Z}\}$
\nBy claim 1 and claim 2,
\n $\{c \mid c \mid a \in \mathbb{Z}\}$
\n $\{c \mid c \mid a \in \mathbb{Z}\}$
\n $\{d \mid c \in \mathbb{Z}\}$

This proof is slightly $\sqrt{P_{root}2}$ different than proof 7
In that it uses the
vseful sup/inf fact $G(c)$ $Trve$ Let $X_A = s y \rho(A)$ and $X_B = s y \rho(B)$. Comme Without loss of generality, assure that $X_{\beta} \leq X_{A}$ (the same proof will work If $X_A \leq X_B$ by interchanging We want to show that x_A is the supremum of AUB. (i) First off, if $l \in A$ UB, then $l \in A$ or $x \in P$.
 $Tf \neq P$, then $\lambda \leq X_A$ **Concerned for A**.
 SMC X_A is an upper bound for A. If le B, then $l \leq X_B \leq X_A$. Therefore, $l \leq X_A$ in either case. so, XA is an upper bound for AUB. (ii) We now show that x_{A} is the least Let c'es another upper bound of AUB. upper bound for AUB. We want to show that $X_A \leq C$. We do this by showing that $c < X$ A IS Impossible. Suppose that $c < XA$. Then $0 < X_A - C$.

 aeA 36 Let $2 = X_A - C$ 70. X_A By the useful, \subset suplint fact, since $\overline{\Sigma = X_A - C}$ $x_{A} = \sup(A)$ we Know that there $exi313$ a $\in A$ with $x_{A} - \varepsilon < \alpha \leq x_{A}$ Thus, since $(X_A - \epsilon) = X_A - (X_A - \epsilon) = C$, we have that $c < a \leq x_A$. $ByH \ a\in AUB$. The equation $c < a$ contradicts CON Chathalles the fact that \subset is an upper bound for AUB. Hence $\chi_{A} \leq C$, We have shown that $x_A = \sup (A \cup B)$. Consecution

B $inf(B)$ $sup(B)$ $inf(A)$ $sv_{P}^{1}(A)$ (picture for ASB. Not reasoning how A is, but can use to help you think about it.) (a) Suppose $A \subseteq B$. Let $S_A = \sup (A)$ and $S_B = \sup (B)$, Since SB is the supremum of B we Know that it is an upper bound for B. Hence $b \leq S_B$ for all $b \in B$. Since $A \subseteq B$ this means that $a \leq s_{B}$ for all Thus, SB is an upper bound for A. Ltoo. Since $s_A = \sup(A)$ is the least speak bound A pott and Sp is an upper bornd on A we know that $5A \leq S_B$, S_{ν} , S_{ν} $(A) \leq S_{\nu}$ (B) . σ The priors that Titles intended $sdp(A)$ $\leq sdp(B)$ suprase $(s^{\circ}_{\omega}+fb^{\circ}_{\omega}the\leq b\geq c)$

 (b) False. Heres an example. Let $A = (-2,-1) \cup (2,3)$ $\beta = (-2, 3)$

 $\hat{j}_{n}f(A)=-2=i_{n}f(B)$ $S_{\nu\rho} (A) = 3 = S_{\nu\rho} (B)$ b ut $A \neq B$

For the next problem, number 7, the main Fact that is used is X if $X \ge 0$
 X if $X < 0$ $\begin{array}{c}\n\sqrt{11} \\
\sqrt{11}\n\end{array}$ $\int x$

 $\bigoplus (a)$ Suppose that $a < x < b$ and $a < y < b$, We want to show that $|x-y| < b-a$. We break the proof into two cases. case 1! Suppose x34. Then $|x-y| = x-y$ (since $x-y \ge 0$). We know $a < x < b$. So, by Collecting addres - a through the equation me get O<x-a
b-a. -48 \$ XX Now a<4 is given. RECALL $g|u|=\sum w_i$ if $u\neq o$ $So, -a>-y.$ $(-u, 7f u 60)$ Thus, $(X-a > X-y)$ s_{0} $x-y \nleq x-a \nleq b-a$ DEF OF 10 X ABS. VALVE \varnothing Thus, $|x-y| = x-y < b-a$. 小本本公 Care 21, Suppose X<Y. Then, $8x-y<0$, So, $|x-y|=-|x-y|=y-x$. We Know a<y <b, subtracting a we get $0 \sqrt{y-a-b-a}$ Now a < x is given: So, $-\alpha$ > - x, So, $\sqrt{y-a~y-x}$ Thus, $|x-y| = y-x < y-a \le b-a$, $\bigotimes_{\mathcal{F}(a)}$

(a) We back This in the cases

\n
$$
\frac{Case 1: a \le b}{Dten a - b \le 0}.
$$
\n
$$
S_{0,1}a - b = -(a - b) = b - a.
$$
\n
$$
S_{0,1}b - a \ge 0.
$$
\n
$$
S_{0,1}b - a = b - a.
$$
\n
$$
Tnub,1a - b = (b - a)
$$
\n
$$
Case 2: a \ge b
$$
\n
$$
Tnuv,1a - b = a - b.
$$
\n
$$
S_{0,1}a - b = a - b.
$$
\n
$$
S_{0,1}b - a = - (b - a) = a - b.
$$
\n
$$
S_{0,1}b - a = - (b - a).
$$
\n
$$
S_{0,1}b - a = - (b - a).
$$
\n
$$
S_{0,2}b - a = - (b - a).
$$

 $\overline{\mathbf{v}}$

5

(F) (c) We break this into cases. case 1; azo and bzo. Then $|a|=a$ and $|b|=b$. Sma $ab \ge 0$ we have $|ab| = ab$. Hince $|ab| = |a| \cdot |b|$ $\frac{case2;az0andb<0}{$ Then $|a|=a$ and $|b|=-b$. Since ab ≤ 0 , we have that $|ab| = -ab$. Hence $|ab| = |a| \cdot |b|$. $case 30000$ and 620 Then $|a|=-a$ and $|b|=b$. Since $ab \le 0$, we have that $|ab| = -ab$, $= 2$ Hence $|ab| = |a| \cdot |b|.$ Chae 4: a <0 and b<0 Then $|a| = -a$ and $|b| = -b$. Since ab 70 , we have that $|ab|=ab$. $P_{max} |ab| = |a| \cdot |b|.$

① (d)
\n $Na_1 = (a-b)+b \leq a-b + b $ \n
\n $ a = (a-b)+b \leq a-b + b $ \n
\n $So_2 \cdot a - b \leq a-b $ \n
\n $Also_1 b = (b-a) + a \leq b-a + a $ \n
\n $So_2 \cdot \frac{1}{2} \cdot \frac{1}{2}$