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The Basics
§ A two-player game is called a combinatorial game if 

there is no randomness involved and all possible moves 
are known to each player.

§ A combinatorial game is called impartial if both players 
have the same moves, and partizan otherwise.

§ Examples:

• We consider the case where the last player to move 
wins (normal play).
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Distance Games
• GRAPHDISTANCE(D,S) is played on a graph G on which 

two players, BLue (Left) and Red (Right), alternately 
place pieces on empty vertices of G according to the 
restrictions of the sets D and S. 

• All vertices are empty at the beginning of the game.
• A BLue piece and a Red piece are not allowed to have 

distance d if d ∈ D (D is for “different”)
• Two BLue pieces or two Red pieces are not allowed to 

have distance s if  s ∈ S (S is for “same”)
• Pieces may not be removed once they are placed, nor 

may they be moved.
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Known Distance Games
• COL: adjacent vertices cannot have the same color

• SNORT: adjacent vertices cannot have different colors. 

• NODEKAYLES: adjacent vertices cannot both be colored.

NODEKAYLES = GRAPHDISTANCE({1},{1})

COL= GRAPHDISTANCE(∅ ,{1})

SNORT = GRAPHDISTANCE({1}, ∅)
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Let’s Play a Game (or two)

Game is over – Red wins!

COL – adjacent vertices cannot have SAME color

SNORT – adjacent vertices cannot have DIFFERENT color

Game is over - Blue wins! 
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How Can We Analyze a Game?
§Strategy stealing, 
mirroring

§Create a game graph and 
then recursively label 
each position, starting 
from the terminal 
positions, as to who wins

COL

(2,1) (3,0)

(1,1)

(1,0)

(2,0)

(0,0)

(3,1)

0
1

0
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33
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Example: NIM
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Complexity of Distance Games
• How hard is is to decide who wins from a given position in 

GRAPHDISTANCE(D,S) for general sets D and S?
• We know that COL, SNORT, NODEKAYLES, and BIGRAPH 

NODEKAYLES played on graphs are PSPACE-hard
• If we know a game T is PSPACE-hard and want to show 

that another game Q is also PSPACE-hard, we need to 
find a function f, called a reduction from T to Q, such 
that
• f maps the positions of T to the positions of Q
• f can be computed in polynomial time

• f preserves winnability
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Specifics of the Reduction 
• The reduction transforms the graph G on which game T is 

played to a graph G’ on which Q is played via insertion of 
a subgraph called gadget

Reduction f

G

Game T

G’

Game Q

Known to be 
PSPACE-hard

To be shown to be 
PSCPAE-hard
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Main Result

THEOREM
The games GRAPHDISTANCE(D,S) are PSPACE-hard when 
either S or D equals {1,2,…,r} and the other is a subset (or 
equal) to {1,2,…,r}.

We will illustrate the proof idea with an example of a 
generalization of SNORT = GRAPHDISTANCE({1} ,∅):

ENSNORT(r) := GRAPHDISTANCE({1,2,…,r} ,∅)
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Example for ENSNORT(3)

Reduction f

x
y

x
y

Play SNORT
D = {1}, S = ∅

Play ENSNORT(3)
D = {1,2,3}, S = ∅

z z

10



9/11/21

6

Forbidden vertex gadget ENSNORT(3)

• Works also for S ⊂D and max(S) ≤ r

x y

Play ENSNORT(3)
D = {1,2,3}, S = ∅

xx

x

x
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Forbidden Vertex Gadget F(r)

R

⌈ r−12 ⌉

B

⌊ r−12 ⌋

if r even

F (r)

va bba =

D or S equals 
{1, 2, …, r}; 
other one is a 
subset
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Proof of Main Result
THEOREM
The games GRAPHDISTANCE(D; S) are PSPACE-hard 
when either S or D equals {1,2,…,r} and the other is a 
subset (or equal) to {1,2,…,r}.

Proof Outline: For GRAPHDISTANCE(D; S) with

• D = {1,2,…,r}, S ⊂D, and max(S) < r, we reduce from 
SNORT

• S = {1,2,…,r}, D ⊂S, and max(D) < r, we reduce from 
COL

• S or D is {1,2,…,r} and max(D) = max(S), we reduce from 
NODEKAYLES
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Why is case max(S) = max(D) different?

• We can color x and y in the same color in SNORT, but 
cannot in GRAPHDISTANCE(D,S), so winnability is no 
longer the same. 

Reduction f
x

y
x

y

Play SNORT
D = {1}, S = ∅

Play GRAPHDISTANCE(D,S)
D = {1,2,3}, S = {1,3}
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Reduction for max(S) = max(D) 
• When max(S) = max(D) = n, then the maximal 
reach for both same and different colors is the 
same

• NODEKAYLES = GRAPHDISTANCE({1},{1}) fits the 
bill

• For the reduction, we replace every edge in G by 
n-1 gadgets of size n
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Reduction for max(S) = max(D) 

• We cannot color x and y in the same color in 
NODEKAYLES; likewise in GRAPHDISTANCE(D,S), so 
winnability is the same. 

Reduction f
x

y
x

y

Play NODEKAYLES
D = {1}, S = {1}

Play GRAPHDISTANCE(D,S)
D = {1,2,3}, S = {1,3}
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Open Problem
Problem 
Is GRAPHDISTANCE(D; S) PSPACE-hard for cases not 
covered by our results? 
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THANK YOU!
sheubac@calstatela.edu

Slides will be posted on my web site
http://web.calstatela.edu/faculty/sheubac/#presentations
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