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set, and edges ij whenever |i − j| ∈ M . We investigate the fractional
chromatic number and the circular chromatic number for distance
graphs, and discuss their close connections with some number theory
problems. In particular, we determine the fractional chromatic num-
ber and the circular chromatic number for all distance graphs G(Z,M)
with clique size at least |M |, except for one case of such graphs. For the
exceptional case, a lower bound for the fractional chromatic number
and an upper bound for the circular chromatic number are presented;
these bounds are sharp enough to determine the chromatic number
for such graphs. Our results confirm a conjecture of Rabinowitz and
Proulx [22] on the density of integral sets with missing differences,
and generalize some known results on the circular chromatic number
of distance graphs and the parameter involved in the Wills’ conjecture
[26] (also known as the “lonely runner conjecture” [1]).

2000 Mathematics Subject Classification: Primary 05C15 and 11B05.

Keywords: distance graphs, independence number, circular chromatic
number, fractional chromatic number, T -coloring, integer sequences, density.

1 Introduction

The notion of distance graphs arose from the search of the “plane chromatic
number”: What is the least number of colors needed to color the plane so
that any two points of unit distance receive distinct colors ? This number is
known to be bounded by 4 and 7 [15, 21], however, the exact value remains
unknown.

Let M be a set of positive integers. The distance graph generated by
M , denoted by G(Z, M), has the set Z of all integers as the vertex set,
and two vertices x and y are adjacent whenever |x − y| ∈ M . Initiated by
Eggleton, Erdős and Skilton [10], the study of distance graphs has attracted
considerable attention. Most of the efforts in the past are devoted to the
chromatic number of such graphs [4, 8, 10, 11, 12, 13, 17, 18, 19, 20, 23, 24].

In this article, we investigate the fractional chromatic number and the
circular chromatic number for distance graphs, and discuss their close con-
nections with some number theory problems.
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A fractional coloring of a graph G is a mapping f which assigns to each
independent set I of G a non-negative weight f(I) such that for each vertex
x,

∑

x∈I f(I) ≥ 1. The fractional chromatic number χf(G) of G is the least
total weight of a fractional coloring of G.

The problem of determining the fractional chromatic number of a distance
graph is equivalent to a number theory problem. For a set M of positive
integers, a set S of non-negative integers is called an M-set if a − b 6∈ M for
any a, b ∈ S. Let S(n) denote |{0, 1, · · · , n} ∩S|. The upper density and the
lower density of S are defined, respectively, by

δ(S) = limn→∞S(n)/n, δ(S) = limn→∞
S(n)/n.

We say S has density δ(S) if δ(S) = δ(S) = δ(S). The parameter of interest
is the maximum density of an M-set, defined by

µ(M) = sup{δ(S) : S is an M-set}.

The problem of determining or estimating µ(M) was initially posed by
Motzkin in an unpublished problem collection (cf. [2]). In 1973, Cantor and
Gordon [2] proved the existence of µ(M) for any M . In addition to [2], the
values of µ(M) for several special families of M have also been studied by
Haralambis [16], Rabinowitz and Proulx [22], and Griggs and Liu [14].

The fractional chromatic number of distance graphs and the density of
M-sets are indeed the same problem, due to the result of Chang, Liu and
Zhu [4]:

Theorem 1.1 For any finite set M , µ(M) = 1/χf(G(Z, M)).

Throughout the article, we mainly use µ(M) instead of χf (G(Z, M)), because
some earlier results used in our proofs are formulated in terms of µ(M). In
addition, we assume gcd(M) = 1, since µ(M) = µ(aM) for any integer a,
where aM is the set obtained by multiplying every element in M by a.

If M is a singleton, then trivially µ(M) = 1/2. If M = {a, b} and a, b are
both odd, then µ(M) = 1/2 (all even numbers form an M-set). Cantor and
Gordon [2] settled the case when a, b are of different parities.
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Theorem 1.2 [2] If M = {a, b} and a and b are of different parities, then

µ(M) =
⌊(a + b)/2⌋

a + b
.

For |M | ≥ 3, the values of µ(M) are known only for some very special sets
M . In [16, 22], the sets M = {1, a, b}, M = {1, 2, a, b} and M = {a, b, a+ b},
are considered, and µ(M) are determined for some special values of a and b.

A set M of positive integers is called difference closed if the difference of
any pair of elements in M falls in M . A set M is almost difference closed

if there exists M ′ ⊂ M such that |M ′| = |M | − 1 and |a − b| ∈ M for
any distinct a, b ∈ M ′. Let ω(G) denote the maximum clique size of G. In
the terminology of graph theory, M is almost difference closed if and only if
ω(G(Z, M)) ≥ |M |, and M is difference closed if and only if ω(G(Z, M)) =
|M | + 1. Thus, the study of µ(M) for almost difference closed sets M is the
same as the study of χf(G(Z, M)) with ω(G(Z, M)) ≥ |M |. Many of the
sets M for which the values of µ(M) have been investigated in the past are
almost difference closed. For instance, if |M | ≤ 2 or M = {a, b, a + b}, then
M is almost difference closed.

In this paper, we determine the values of µ(M) for most of the almost
difference closed sets M . There is only one exceptional case, M = {x, y, y −
x, y + x} where y > x, and both x and y are odd, for which we prove a lower
bound and an upper bound of µ(M). These bounds are sharp enough to
determine the chromatic number for such graphs.

Our results confirm a conjecture on the value of µ(M) for M = {a, b, a +
b}, proposed by Rabinowitz and Proulx [22] in 1985, and generalize many
previously known theorems. Moreover, results on µ(M) are used to inves-
tigate (or compare with) other parameters, including the chromatic number
and the circular chromatic number of distance graphs generated by almost
difference closed sets, and the parameter κ(M) involved in the long standing
open conjecture of Wills [26].

For a real number x, let ||x|| denote the distance from x to the nearest
integer, i.e., ||x|| = min{x− ⌊x⌋, ⌈x⌉ − x}. For a real number t and a set of
real numbers X, let ||tX|| = inf{||tx|| : x ∈ X}, and

κ(X) = sup{||tX|| : t ∈ R}.
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It was proved in [2] that for any set M , it is always true that

κ(M) ≤ µ(M). (1.1)

We completely determine the values of κ(M) for almost difference closed
sets. The results imply the existence of an infinite family of four-element sets
M with κ(M) < µ(M). It is known that κ(M) = µ(M) holds for all M with
|M | ≤ 2, and it is open whether there exists any three-element set M such
that κ(M) < µ(M).

Let k ≥ d be positive integers. A (k, d)-coloring of a graph G is a mapping,
c : V (G) → {0, 1, · · · , k − 1}, such that d ≤ |c(u) − c(v)| ≤ k − d for any
uv ∈ E(G). The circular chromatic number of G, χc(G), is the minimum
ratio k/d such that G admits a (k, d)-coloring. It is known [27] that for any
graph G,

χf (G) ≤ χc(G) ≤ χ(G) = ⌈χc(G)⌉.

On the other hand, for any M , it is known [27] that χc(G(Z, M)) ≤ 1/κ(M).
In the last section, we determine the values of χc(G(Z, M)) for all almost
difference closed sets M , except for the case that M = {x, y, y − x, y + x},
where y > x, and x and y are odd.

A characterization of almost difference closed sets was given by Kemnitz
and Marangio [18].

Theorem 1.3 [18] Suppose M is a finite set of positive integers with |M | =
m and gcd(M) = 1. Then M is almost difference closed if and only if M is

one of the following:

A.1) M = {a, 2a, 3a, · · · , (m − 1)a, b}.

A.2) M = {a, b, a + b} for some b 6= 2a.

A.3) M = {x, y, y − x, y + x} for some y 6= 2x.

Hence, almost difference closed sets are partitioned into three types, A.1,
A.2 and A.3. Treatments for these types are different. In the next three
sections, we investigate the values of µ(M) for Types A.1, A.2 and A.3,
respectively.
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By (1.1), a method of getting lower bounds for µ(M) is to determine or
estimate κ(M). Moreover, the inequalities (1.2) below are also useful for
bounding µ(M).

1/(|M | + 1) ≤ µ(M) ≤ 1/|M |. (1.2)

Note that (1.2) follows from the fact that ω(G) ≤ χf (G) ≤ χ(G) for any
graph G, and the result χ(G(Z, M)) ≤ |M | + 1 for any M [25, 8]. Another
useful tool for establishing upper bounds for µ(M) is the following lemma
proved in [16]:

Lemma 1.4 [16] Let M be a set of positive integers, α a real number in

the interval (0, 1]. If µ(M) ≥ α then there is an M-set S such that for any

n ≥ 0, S(n) ≥ α(n + 1). In particular, S(0) ≥ α implies that 0 ∈ S.

2 Almost difference closed sets of Type A.1

This type turns out to be the easiest one. We completely determine the
values of µ(M) and κ(M), which are always equal for this type.

For a set A and an integer a, denote A + a = {x + a : x ∈ A}.

Theorem 2.1 Suppose M = {a, 2a, · · · , (m − 1)a, b}, where gcd(a, b) = 1.
If a = 1, then

µ(M) = κ(M) =

{

1
m

, if b is not a multiple of m;
k

km+1
, if b = km for some k.

If a ≥ 2, then µ(M) = κ(M) = 1/m.

Proof. Assume a = 1. If b is not a multiple of m, let t = 1/m. Then
||tM || = 1/m, so µ(M) ≥ κ(M) ≥ 1/m. By (1.1) and (1.2), the equalities
hold.

Now assume M = {1, 2, 3, · · · , m − 1, mk} for some integer k ≥ 1. Let
t = k/(mk +1). Then ||Mt|| = k/(mk +1), so µ(M) ≥ κ(M) ≥ k/(mk +1).
To prove that µ(M) ≤ k/(mk+1), by Lemma 1.4, it suffices to show that for
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any M-set S with 0 ∈ S, we have S(mk) ≤ k. As 0 ∈ S, one has b = mk 6∈ S.
Partition the set {0, 1, 2, · · · , mk − 1} into

Xi = {0, 1, · · · , m − 1} + im, for i = 0, 1, · · · , k − 1.

Obviously |S ∩ Xi| ≤ 1, so S(mk) ≤ k. Therefore µ(M) ≤ k/(mk + 1).

Assume a ≥ 2. By (1.1) and (1.2), it suffices to prove that κ(M) ≥ 1/m,
i.e., to show that there exists t such that ||Mt|| ≥ 1/m. Let b = q(am) + r,
0 ≤ r < am. Then r > 0, since gcd(a, b) = 1. If a ≤ r ≤ (m − 1)a, let
t = 1/(am). It is easy to see that ||Mt|| = 1/m.

Assume 1 ≤ r ≤ a − 1. Let l be the smallest integer with rl ≥ a.
Then 2 ≤ l ≤ a and a ≤ rl ≤ 2a − 1. Moreover, there exists some k ∈
{0, 1, 2, · · · , m − 3} such that l + k ≡ ±1 (mod m), so a(l + k) ≡ ±a (mod
am). Take t = (l + k)/(am). Then ||bt|| = ||r(l + k)/(am)|| ≥ 1/m, since

a ≤ (l + k)r ≤ (l + m − 3)r = (l − 1)r + (m − 2)r
< a + (m − 2)a = (m − 1)a.

Because a(l + k) ≡ ±a (mod am), one has, for any j = 1, 2, · · · , m − 1,
(l + k)(ja) = ±ja (mod am), so ||t(ja)|| ≥ 1/m. Hence, κ(M) ≥ ||tM || ≥
1/m.

The proof for the case that (m−1)a+1 ≤ r ≤ am−1 is similar, we omit
the details.

3 Almost difference closed sets of Type A.2

Let T be a set of non-negative integers with 0 ∈ T . A T -coloring of a
graph G, with span k, is a function f : V (G) → {0, 1, 2, 3 · · · , k} such that
|f(u)− f(v)| /∈ T if u ∼ v. For a given set T , denote δn(T ) by the minimum
span of a T -coloring for Kn. The asymptotic T -coloring ratio is defined as

rt(T ) = lim
n→∞

δn(T )/n.

The parameter rt(T ) has been studied by Rabinowitz and Proulx [22] and by
Griggs and Liu [14]. It was noted in [14] that µ(M) = rt(T ), if T = M ∪{0}.
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Some known results used in this section are originally given in terms of rt(T ).
Due to the equivalence of the two parameters, we shall consistently use µ(M).

Suppose M = {a, b, a + b}. If none of a, b or a + b is a multiple of 3, then
it is easy to prove that κ(M) = µ(M) = 1/3 ([22]) (all multiples of 3 form
an M-set). If a = 1, i.e. M = {1, b, b + 1}, then the value of µ(M) was
determined in [16].

For other sets of Type A.2, a lower bound for µ(M) was proved in [22]
and the authors conjectured that the lower bound is sharp:

Conjecture 1 [22] Suppose M = {a, b, a + b}, gcd(a, b) = 1, and one of

a, b, a + b is a multiple of 3. Then

µ(M) = max{
⌊(2b + a)/3⌋

2b + a
,
⌊(2a + b)/3⌋

2a + b
}.

We prove this conjecture, and hence determine the values of µ(M) for all
Type A.2 sets. To confirm Conjecture 1, by the lower bound shown in [22],
it suffices to prove

µ(M) ≤ max{
⌊(2b + a)/3⌋

2b + a
,
⌊(2a + b)/3⌋

2a + b
}.

The inequality above is established by the following theorem.

Theorem 3.1 Suppose M = {a, b, a+b}, where 0 < a < b and gcd(a, b) = 1.
Then

µ(M) ≤











1/3, if b − a = 3k;

(a + k)/(3a + 3k + 1), if b − a = 3k + 1;
(a + 2k + 1)/(3a + 6k + 4), if b − a = 3k + 2.

Proof. Let c = a + b. The result for the case b− a = 3k was proved in [22].

Case 1: b − a = 3k + 1

Suppose S is an M-set, 0 ∈ S. By Lemma 1.4, it suffices to show that
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there exists an integer n satisfying the inequality

S(n) ≤
a + k

3a + 3k + 1
(n + 1). (3.1)

Consider S(c + a − 1). Note that a, b, c 6∈ S, since 0 ∈ S. For i =
1, 2, · · · , a − 1, define the Triangle-i by

Ti = {i, i + b, i + c}.

Since the difference of any two elements of Ti lies in M , one has |S ∩Ti| ≤ 1.
Set

I = {1 ≤ i ≤ a − 1 : S ∩ Ti = Ø},

T = S ∩ {a + 1, a + 2, · · · , b − 1}, and t = |T |.

Hence S(c+a−1) = t+a−|I|. If t ≤ k, then S(c+a−1) ≤ a+k, implying
(3.1), as n = c + a − 1.

Assume t ≥ k + 1. We prove that (3.1) holds when n = b + c − 1. Note
that b + c − 1 = 3a + 6k + 1. Since t ≥ k + 1, we have

a + k

3a + 3k + 1
(3a + 6k + 2) ≥ a + 2k ≥ a + 3k + 1 − t.

Hence, it suffices to show the following

S(b + c − 1) ≤ a + 3k + 1 − t. (3.2)

Observe that S(b+c−1) = S(c+a−1)+ |S∩{c+a, c+a+1, · · · , c+b−1}|.
Let U = {c + a, c + a + 1, · · · , c + b − 1} − S. Then

S(b + c − 1) = a + t − |I| + (b − a) − |U |.

Note that a + 3k + 1 − t = a + t + (b − a) − 2t. Hence, to prove (3.2), it
amounts to show that |I| + |U | ≥ 2t. That is, to prove that, for each i ∈ T ,
there exist two distinct elements, i1, i2 ∈ I∪U , such that {i1, i2} and {j1, j2}
are disjoint whenever i 6= j.

For any i ∈ T , let i1 = i + c, then i1 ∈ U .

The element i2 is defined according to the following two cases:
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1) i ≥ 2a. Let i2 = i + b. Then i2 ∈ U , and i1 6= i2.

2) i < 2a. Then 1 ≤ i − a ≤ a − 1. Consider the triangle

Ti−a = {i − a, i − a + b, i − a + c}.

Since i ∈ S and |i− (i− a)|, |i− (i− a + c)| ∈ M , one of the following holds:

S ∩ Ti−a = Ø or S ∩ Ti−a = {i − a + b}.

If S ∩ Ti−a = Ø, let i2 = i − a. Then i2 ∈ I and i1 6= i2. If S ∩ Ti−a =
{i − a + b}, let i2 = i + 2b − a. Then i2 ∈ U (because i + b − a ∈ S
and (i + 2b − a) − (i + b − a) = b ∈ M). Since b 6= 2a (for otherwise
|i − (i + b − a)| ∈ M), one has i1 6= i2.

It remains to show that for i, j ∈ T , if i 6= j then {i1, i2} ∩ {j1, j2} = Ø.
Without loss of generality, we assume i < j.

It is obvious that i1 6= j1. If i2 = j2, then since i < j, we only have to
check the case that i2 = i + 2b − a = j2 = j + b. However, this would imply
that j = i + b − a > b (since i ≥ a + 1), a contradiction.

If i2 = j1 = j + c, then i2 = i + 2b− a (since i < j). Hence j = i + b− 2a.
By definition of i2, we have i + b − a ∈ S. This is impossible, because then
the difference of j and i + b − a (elements of S) is a, but a ∈ M .

If j2 = i1 = i + c, then either j2 = j + b or j2 = j + 2b − a. The former
case implies that j − i = a, a contradiction, since j, i ∈ S. By definition of
j2, the latter case implies that j + b − a ∈ S. This is again a contradiction,
since |(j + b − a) − i| = a ∈ M .

Case 2: b − a = 3k + 2

The proof of this case is similar to the one of Case 1. Suppose S is an
M-set with 0 ∈ S. By Lemma 1.4, we shall prove that there exists an integer
n satisfying the inequality

S(n) ≤
a + 2k + 1

3a + 6k + 4
(n + 1). (3.3)

Consider S(c + a − 1). Similar to Case 1, set

Ti = {i, i + b, i + c}, for i = 1, 2, · · · , a − 1,
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I = {1 ≤ i ≤ a − 1 : S ∩ Ti = Ø},

T = S ∩ {a + 1, a + 2, · · · , b − 1}, and t = |T |.

Hence S(c + a − 1) = t + a − |I|. If t ≤ k, then S(c + a − 1) ≤ a + k. This
implies that (3.3) holds when n = c + a − 1 = 3k + 3a + 1, because

a + k ≤
a + 2k + 1

3a + 6k + 4
(3a + 3k + 2).

Assume t ≥ k + 1. By the same argument used in Case 1 (the one about
assigning i1 and i2 to each i ∈ T ), one can show that

S(b + c − 1) = S(3a + 6k + 3) ≤ a + t + (b − a) − 2t ≤ a + 2k + 1.

Hence (3.3) is satisfied when n = b + c − 1 = 3a + 6k + 3.

4 Almost difference closed sets of Type A.3

This type turns out to be the most complicated family of almost difference
closed sets, as far as the values of µ(M) are concerned. The case that x and
y are of distinct parity is easy. It was proved by Kemnitz and Kolberg [17]
that for this case, χ(G(Z, M)) = 4. Hence, χ(G(Z, M)) = ω(G(Z, M)) = 4,
so we have

Theorem 4.1 If M = {x, y, y − x, x + y}, y > x, and x, y are of distinct

parity, then µ(M) = 1/4.

Because gcd(x, y) = 1, for Type A.3 sets, it remains to consider the case
that x, y are both odd. Note that for this case, it was proved by Kemnitz and
Marangio [19] that χ(G(Z, M)) = 5, however, this result does not provide
further information to the value of µ(M) other than the bound µ(M) ≥

1
χ(G)

= 1/5, which can also be obtained directly from (1.2). Below, we prove

a better lower bound for µ(M).

Lemma 4.2 Suppose M = {x, y, y − x, y + x}, where y > x, x = 2k + 1,

y = 2m + 1 and gcd(x, y) = 1. Then µ(M) ≥ (k+1)m
4(k+1)m+1

.
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Proof. Let n = xy + y − x = 4(k + 1)m + 1. Set

I = {0, 2x, 4x, · · · , (m − 1)2x}; Y = ∪k
i=0{I + 2iy (mod n)};

S = ∪∞

k=0(Y + kn).

We shall prove that S is an M-set with density (k+1)m
n

. Note that S is
“periodic” with period n = xy + y − x. Thus, to show that S has density
(k+1)m

n
, it suffices to verify that |S ∩ {0, 1, · · · , n − 1}| = (k + 1)m.

To prove this, it suffices to show that for i 6= i′, one has (I + 2iy) ∩
(I + 2i′y) = Ø. Suppose to the contrary, there exist i 6= i′ and j 6= j′,
0 ≤ i ≤ i′ ≤ k, 0 ≤ j, j′ ≤ m − 1, such that one of the following holds:

2jx + 2iy = 2j′x + 2i′y, or 2jx + 2iy = 2j′x + 2i′y + xy + y − x.

This implies that (j− j′)x = (i′− i)y or (2(j− j′)+1)x = 2(i′− i−1)y +xy.
Neither one is possible, since 2|j − j′| < y − 1 and gcd(x, y) = 1.

We now show that S is an M-set. Let

u = 2tx + 2iy, v = 2t′x + 2i′y, for some 0 ≤ t, t′ ≤ m − 1, 0 ≤ i, i′ ≤ k.

Then
2x < |u − v| = |2(t− t′)x + 2(i − j)y|

≤ (y − 3)x + (x − 1)y
= 2xy − 3x − y < 2n − (x + y).

Therefore, it suffices to show that

|u − v| /∈ {y, (y − x), (y + x), n ± x, n ± y, n ± (y − x), n ± (y + x)}.

Note that |u − v| is even, so it remains to show that

|u − v| /∈ {y − x, y + x, n ± x, n ± y}.

By definition of u and v, we have

|2(t − t′)| ≤ 2(m − 1) = y − 3, (4.1)

|2(i − i′)| ≤ 2k = x − 1. (4.2)
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Without loss of generality, we assume that u− v = 2(t− t′)x+2(i− i′)y > 0.

If 2(t−t′)x+2(i−i′)y = y±x, then (2t−2t′∓1)x+(2i−2i′−1)y = 0, which
is impossible, because 0 < |2t−2t′±1| ≤ y−2 (by (4.1)), and gcd(x, y) = 1.

If 2(t−t′)x+2(i−i′)y = n+x = xy+y, then (2t−2t′)x = (2i′−2i+x+1)y.
This is impossible, because |2i′ − 2i +x + 1| > 0 (by (4.2)), |2t− 2t′| < y (by
(4.1)), and gcd(x, y) = 1.

If 2(t − t′)x + 2(i − i′)y = n − x = xy + y − 2x, then 2(t − t′ + 1)x =
(2i′ − 2i + x + 1)y. Again this is impossible.

Similarly, one can show that 2(t − t′)x + 2(i − i′)y 6= n ± y.

We conjecture that the equality in Lemma 4.2 always holds.

Conjecture 2 If M = {x, y, y − x, y + x}, where y > x, x = 2k + 1,

y = 2m + 1 and gcd(x, y) = 1, then µ(M) = (k+1)m
4(k+1)m+1

.

The following result confirms Conjecture 2, for the case that x = 1.

Theorem 4.3 If M = {1, 2m, 2m+1, 2m+2} for some m > 1, then µ(M) =
κ(M) = m/(4m + 1).

Proof. By Lemma 4.2, it suffices to show that µ(M) ≤ m/(4m+1). Let S be
an M-set. By Lemma 1.4, it suffices to show that if 0 ∈ S, then S(4m) ≤ m.
Partition the set of integers {0, 1, · · · , 4m} − {2m} into

Ri = {i, i + 1, i + 2m + 1, i + 2m + 2}, i = 0, 2, · · · , 2m− 2.

Then |S ∩ Ri| ≤ 1. Furthermore, since 0 ∈ S, we have 2m 6∈ S, implying
that S(4m) ≤ m.

Let β = 1
(k+1)m

. Lemma 4.2 asserts that µ(M) ≥ 1
4+β

. In the following,

we establish an upper bound for µ(M), in a similar format

Lemma 4.4 Suppose M = {x, y, y − x, y + x}, where y > x, x = 2k + 1,
y = 2m + 1 and gcd(x, y) = 1. Let δ = 1

k2+2km+3k+m+1
. Then µ(M) ≤ 1

4+δ
.

13



Proof. Let S be an M-set of maximum density. By some result in [14] and
[2], we may assume that S is periodic, i.e., there is an integer n such that for
any k ≥ 0, S ∩ {kn, kn + 1, · · · , (k + 1)n − 1} = B + kn, for some subset B
of {0, 1, · · · , n − 1}.

In the remaining of the proof, we regard B as a subset of Zn. All cal-
culations are carried out in the group Zn (i.e., modulo n). For instance, for
each i ∈ Zn, B + i = {b + i : b ∈ B} ⊂ Zn (b + i is carried out in Zn). Let
|B| = q. Then |B + i| = q for any i. The density of S is q/n. Let z = n−4q.
It suffices to show that z ≥ δq = q

k2+2km+3k+m+1
.

Because S is an M-set, for any i, j ∈ B, one has i − j (mod n) 6∈ M .
Hence, (B + i) ∩ (B + j) = Ø, whenever |i − j| ∈ M .

Claim 1 |(B ∪ (B + y)) ∩ (B + (xy + x))| ≥ q − (m + 1)z. (4.3)

Proof of Claim 1: Let

A = B ∪ (B + y) ∪ (B + x) ∪ (B + (x + y)) ∪ (B + 2x) ∪ (B + (2x + y)),

C = (B ∪ (B + y)) − ((B + 2x) ∪ (B + (2x + y))).

We first show that |C| ≤ z. Note that B, B + y, B + x, B + (x + y) are
pairwise disjoint, and B + x, B + 2x, B + (x + y), B + (2x + y) are pairwise
disjoint. Hence

|C| = |A−((B+x)∪(B+(x+y))∪(B+2x)∪(B+(2x+y)))| ≤ |A|−4q ≤ z.

Next, we show that |(B∪(B+y))−((B+(xy+x))∪(B+(xy+x+y))| ≤
(m + 1)z. Observe that 2(m + 1)x = xy + x. So

|(B ∪ (B + y)) − ((B + (xy + x)) ∪ (B + (xy + x + y))|

= |(B ∪ (B + y)) − ((B + 2(m + 1)x) ∪ (B + 2(m + 1)x + y))|

≤
m

∑

j=0

|((B + 2jx) ∪ (B + 2jx + y)) − ((B + 2(j + 1)x) ∪ (B + 2(j + 1)x + y))|

=
m

∑

j=0

|C + 2jx| ≤ (m + 1)z.

As |(B∪ (B + y))| = |((B +(xy +x))∪ (B +(xy +x+ y))| = 2q, we conclude

|(B∪ (B + y))∩ ((B +(xy +x))∪ (B +(xy +x+ y))| ≥ 2q− (m+1)z. (4.4)

14



This implies (4.3), since |B + (xy + x + y)| = q.

Claim 2 |(B +(x+y))∩ (B+(xy +x))| ≥ q−k(k+2m+3)z. (4.5)

Proof of Claim 2: Let

A′ = B ∪ (B + x) ∪ (B + y) ∪ (B + (x + y)) ∪ (B + 2y) ∪ (B + (x + 2y)),

C ′ = (B ∪ (B + x)) − ((B + 2y) ∪ (B + (x + 2y))).

Similarly as in the proof of Claim 1, we have |C ′| = |A′| − 4q ≤ z, and the
following: (Note that 2(k + 1)y = xy + y.)

|(B ∪ (B + x)) − ((B + (xy + y)) ∪ (B + (xy + x + y))| ≤ (k + 1)z.

This implies that

|(B ∪ (B + x)) ∩ ((B + (xy + y)) ∪ (B + (xy + x + y))| ≥ 2q − (k + 1)z.

Hence
|(B ∪ (B + x)) ∩ (B + (xy + x + y))| ≥ q − (k + 1)z. (4.6)

It follows from (4.4) that

|(B ∪ (B + y)) ∩ (B + (xy + x + y))| ≥ q − (m + 1)z. (4.7)

As B, (B + x), (B + y) are pairwise disjoint, we have

(B + (xy + x + y)) ∩ (B + x) ⊆ (B + (xy + x + y)) − (B ∪ (B + y)).

Hence, by (4.7), |(B + (xy + x + y)) ∩ (B + x)| ≤ (m + 1)z. Combining this
with (4.6), we conclude that

|B ∩ (B + (xy + x + y))| ≥ q − (m + k + 2)z. (4.8)

By adding y to the involved sets of (4.4), we have

|((B+y)∪(B+2y))∩((B+(xy+x+y))∪(B+(xy+x+2y))| ≥ 2q−(m+1)z.

This implies that |(B + (xy + x + y)) − ((B + y) ∪ (B + 2y))| ≤ (m + 1)z,
and hence

|((B + (xy + x + y)) ∩ B) − ((B + y) ∪ (B + 2y))| ≤ (m + 1)z.
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Because B ∩ (B + y) = Ø, we have

|((B + (xy + x + y)) ∩ B) − (B + 2y)| ≤ (m + 1)z. (4.9)

Combining (4.8) and (4.9), one has

|(B + (xy + x + y)) ∩ B ∩ (B + 2y)| ≥ q − (k + 2m + 3)z.

Hence, |B ∩ (B + 2y)| ≥ q − (k + 2m + 3)z. This implies that

|B − (B + 2y)| ≤ (k + 2m + 3)z.

Note that B + 2ky = B + (xy − y). So

|B − (B + xy − y)| = |B − (B + 2ky)|

≤
k−1
∑

j=0

|(B + 2jy) − (B + 2(j + 1)y)|

=
k−1
∑

j=0

|(B − (B + 2y))| ≤ k(k + 2m + 3)z.

This implies that

|B ∩ (B + (xy − y))| ≥ q − k(k + 2m + 3)z. (4.10)

Hence, (4.5) is established by adding x + y to the sets in (4.10). This com-
pletes the proof of Claim 2. 2

Because B, B + y, B + (x + y) are pairwise disjoint, we conclude that

q = |B + xy + x|

≥ |(B ∪ (B + y)) ∩ (B + (xy + x))| + |(B + (x + y)) ∩ (B + (xy + x))|

≥ 2q − (k(k + 2m + 3) + (m + 1))z.

Hence z ≥ q

k2+2km+3k+m+1
. This completes the proof.
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5 Consequences and related problems

In this section, we determine the values of χc(G(Z, M)) for all almost differ-
ence closed sets M , except for the sub-case of Type A.3, M = {x, y, y−x, y+
x}, where x and y are odd. For the exceptional case, the bounds for µ(M)
proved in the previous section are sharp enough to determine the chromatic
number. In addition, we completely determine the values of κ(M) for all
almost difference closed sets.

We begin with the Type A.1 sets, M = {a, 2a, · · · , (m − 1)a, b} with
gcd(a, b) = 1. The following is a corollary of Theorem 2.1, where the a = 1
case was first proved in [3] and the a ≥ 2 case was first proved in [18].

Throughout the section, we denote G(Z, M) by G.

Corollary 5.1 Suppose M = {a, 2a, · · · , (m − 1)a, b}, gcd(a, b) = 1. Then

χf(G) = χc(G) =
1

κ(M)
=

{

m, if a = 1 and m 6 | b, or if a ≥ 2;
m + 1

k
, if a = 1 and b = km for some k.

For Type A.2 sets, the values of κ(M) were determined by Y. Chen [6];
and the chromatic numbers were determined by J. Chen et al. [8] and by
Voigt [23]. Partial results on the circular chromatic number and the fractional
chromatic number were obtained by Zhu [28].

Using Theorem 3.1, we are able to completely determine χf(G) and χc(G)
for Type A.2 sets. Combining Theorem 3.1 with the values of κ(M) obtained
in [6], we conclude:

Theorem 5.2 Suppose M = {a, b, a + b}, 0 < a < b, gcd(a, b) = 1. Then

χf (G) = χc(G) = 1/κ(M) =











3, if b − a = 3k;

3 + 1
a+k

, if b − a = 3k + 1;

3 + 1
b−k−1

, if b − a = 3k + 2.

The rest of this section deals with Type A.3 sets. Note that by using
Theorem 4.1, Lemma 4.4, and (1.2), we can determine the chromatic number
for this type of sets M , which was obtained in [17] and [18] by different
approaches.
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Corollary 5.3 Suppose M = {x, y, y − x, x + y}, where gcd(x, y) = 1. If

x, y are of distinct parity, then χf(G) = χc(G) = χ(G) = 4. If x and y are

both odd, then χ(G) = 5.

As remarked earlier, µ(M) ≥ κ(M) for any M . The question whether
the equality always holds was first raised in [2], and then discussed in [16].
An infinite family of sets M for which µ(M) > κ(M) was given in [16].

Our results indicate that µ(M) = κ(M) for Types A.1 and A.2 sets. For
Type A.3 sets, however, as shown in the next few results, the equality does
not always hold.

If M = {x, y, y − x, x + y}, where x, y are of distinct parity and none
of x, y is a multiple of 4, then ||1

4
M || = 1/4, so κ(M) = 1/4. Hence by

Theorem 4.1, µ(M) = κ(M). In what follows, we give the κ(M) values for
the remaining Type A.3 sets.

It is known and not hard to show (cf. [16]) that κ(M) is a fraction
whose denominator always divides the sum of some pair of elements in M .
Indeed, suppose κ(M) = ||tM || = p/q, then there exist a, b ∈ M such that
at = k1 + p/q and bt = k2 − p/q, for some integers k1 and k2 (otherwise, one
may increase or decrease t by a small amount so that ||tM || increases). This
implies that t = (k1 + k2)/(a + b), and hence q|(a + b).

Lemma 5.4 Suppose M = {x, y, y − x, y + x}, where gcd(x, y) = 1. If one

of x and y is a multiple of 4 and the other is odd, or if both x and y are odd,

then κ(M) < 1/4 = µ(M).

Proof. By Theorem 4.1, it suffices to show that κ(M) 6= 1/4. Assume
κ(M) = ||tM || = 1/4. Then t = k/(a + b) for some a, b ∈ M and a + b
is a multiple of 4 (by the explanation above). For the sets M considered
in this theorem, there are only two cases that M contains such a, b: 1)
{a, b} = {x, y −x} where y is a multiple of 4 and x is odd; 2) {a, b} = {x, y}
where one of x, y is ≡ 1 (mod 4) and the other is ≡ 3 (mod 4). Neither one
of these is possible, since 1) implies ||ty|| = 0; and 2) implies ||t(x+ y)|| = 0.

Let φ4(n) denote ⌊n
4
⌋/n.
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Lemma 5.5 Suppose M = {x, y, y − x, y + x}, where gcd(x, y) = 1. Then

κ(M) ≥ φ4(a + b), where {a, b} is any one of the following 2-element subsets

of M : {x + y, y}, {x + y, x}, {y − x, y}.

Proof. Because gcd(x, y) = 1, so gcd(a, b) = gcd(a, a + b) = 1. Hence,
there exists an integer k such that ak ≡ (a+ b)φ4(a+ b) (mod (a + b)). Let
t = k

a+b
. Then ||ta|| = φ4(a + b), ||tb|| = || − ta|| = φ4(a + b). The other two

elements of M belong to the set X = {±(a− b),±(2a− b)} (mod (a + b)).
It is straightforward to verify that ||tx|| ≥ φ4(a + b) holds for each x ∈ X.
Therefore, κ(M) ≥ ||tM || = φ4(a + b).

Corollary 5.6 Suppose M = {x, y, y−x, y +x}, where gcd(x, y) = 1. Then

κ(M) =



























































φ4(2y + x), if x ≡ 0 (mod 4) and y ≡ 3 (mod 4), or

x ≡ 1 (mod 4) and y ≡ 0 (mod 4), or

x ≡ 3 (mod 4) and y ≡ 1, 3 (mod 4);
φ4(2x + y), if x ≡ 0 (mod 4) and y ≡ 1 (mod 4), or

x ≡ 1 (mod 4), y ≡ 3 (mod 4), and y < 3x;

φ4(2y − x), if x ≡ 3 (mod 4) and y ≡ 0 (mod 4), or

x ≡ y ≡ 1 (mod 4), or

x ≡ 1 (mod 4), y ≡ 3 (mod 4), and y ≥ 3x.

Proof. Denote by β(M) the corresponding value on the right-hand-side of
the above equality. It is straightforward to verify that

β(M) = max{p/q : p/q < 1/4, and q divides the sum of two elements of M}.

By Lemma 5.4, and the discussion preceding it, we have κ(M) ≤ β(M). By
Lemma 5.5, κ(M) ≥ β(M). So the equality holds.

By Theorem 4.1, Lemma 4.2 and Corollary 5.6, we conclude that

Theorem 5.7 Let M = {x, y, y − x, y + x}, gcd(M) = 1. Then µ(M) =
κ(M), when x = 1 and y is odd, or when x and y are of different parities

and none of them is a multiple of 4; otherwise, κ(M) < µ(M).
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Besides almost difference closed sets, the values of µ(M) and κ(M) are
known only for very few sets M . In particular, the following remains open:

Question Is it true that µ(M) = κ(M) for all M with |M | = 3?

A long standing open question concerning κ(M) is the following conjec-
ture due to Wills [26].

Conjecture 3 Suppose M is a finite set of positive integers with |M | = m.

Then κ(M) ≥ 1/(m + 1).

Conjecture 3 is also known as the “lonely runner conjecture” by Bienia
et al. [1] due to the interpretation: Suppose m runners run laps on a circular
track of unit length. Each runner maintains a distinct constant speed. A
runner is called lonely if the distance (on the circular track) between him (or
her) and every other runner is at least 1/m. The conjecture is equivalent to
assert that for each runner, there is a time when (s)he is lonely.

Although Conjecture 3 has attracted considerable attention, it remains
open for m ≥ 5. For m ≤ 4, the conjecture is confirmed [1, 5, 7, 9].

If Conjecture 3 is true, then the bound 1/(m + 1) is sharp for difference
closed sets. Only very few other sets M attaining this bound are known.
(This is another motivation we consider almost difference closed sets). As an
analogy to Conjecture 3, we have µ(M) ≥ 1/(m + 1) (cf. (1.2)). This bound
is attained by difference closed sets. However, we do not know whether there
is any other set M attaining this bound. It seems natural to conjecture the
following:

Conjecture 4 Suppose M is a finite set of positive integers with |M | = m.

If M is not almost difference closed, then χf(G(Z, M)) ≤ m, or equivalently,

µ(M) ≥ 1/m.

The conjecture above is weaker than the following conjecture of [28]:

Conjecture 5 Suppose M is a finite set of positive integers with |M | = m.

If M is not almost difference closed, then χ(G(Z, M)) ≤ m.

We note here that for m ≤ 3, both Conjectures 4 and 5 are true [5, 7, 28].

20



References

[1] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi, Flows, view
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[11] R. B. Eggleton, P. Erdős and D. K. Skilton, Research problem 77,
Disc. Math., 58 (1986), 323.
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