
MINI-SUDOKUS AND GROUPS

CARLOS ARCOS, GARY BROOKFIELD, AND MIKE KREBS

By now you probably have at least a passing acquaintance with Sudoku, the
pencil-and-paper puzzle that has, for the past few years, been displacing advice
columns and word jumbles from the back pages of newspapers all over the world.

The rules are simple. One is given a 9 × 9 grid. Each cell in the grid is to be
filled in with one of the digits from 1 to 9. Some of the cells have been filled in
already, as in the example below.

3 5 7 1
6 1

9 3 6

4 6 5 9
7 6

5 2 7 1

7 2 3
3 5

6 8 4 2

The puzzler may not fill in the empty cells willy-nilly; he or she must obey the
Rule of One, which requires that each row, each column, and each block (the 3× 3
subgrids with thick borders) must contain every digit from 1 to 9 exactly once. To
simplify our discussion we say that a 9× 9 grid completely filled with the digits 1
to 9 such that the Rule of One holds is a Sudoku. (So the grid above, then, is not
a Sudoku according to our definition, because not all of the cells have been filled
in. Once all the cells have been filled in, then it’s a Sudoku.)

The rules of Sudoku suggest many natural mathematical questions: How do
you construct these puzzles? How do you solve these puzzles? How many different
Sudokus are there? How many of these are essentially different? We call two
Sudokus essentially the same, or equivalent, if you can get from one to the other in
finitely many steps where a single step might be switching the first two columns,
or rotating the grid ninety degrees, or relabeling entries (replacing every 2 with a 7
and every 7 with a 2, for example). We will make this notion of equivalence more
precise in the sections that follow.

The answers to the questions above are known. Felgenhauer and Jarvis [4] found
that there are 6, 670, 903, 752, 021, 072, 936, 960 Sudokus. That’s a big number.
Also, Jarvis and Russell [8] found that there are 5, 472, 730, 538 essentially different
Sudokus. That’s a smaller number. But it’s still pretty darn big. Both of these
numbers were calculated using computers.
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There is no need to limit oneself to 9× 9 grids; any grid of size n2 × n2 will do.
Herzberg and Murty [7] use graph-theoretic techniques to provide an asymptotic
estimate for the number of n2 × n2 Sudokus.

In this article, we wish to be accessible to those without a background in graph
theory, and we also wish to keep things on an order of magnitude that a human can
more readily comprehend. We therefore answer these questions about the much
simpler, but still interesting, case of 4 × 4 Sudokus. We call these mini-Sudokus.
Thus a mini-Sudoku is a 4× 4 grid, for example,

1 2 3 4
3 4 1 2

2 1 4 3
4 3 2 1

,

such that the Rule of One holds: Each row, each column, and each block (the 2× 2
subgrids with thick borders) contains every digit from 1 to 4 exactly once.

Our main tools come from group theory. In particular, the notion of groups
acting on sets will enable us to define precisely what it means for two mini-Sudokus to
be essentially the same. Undergraduate math majors will have seen these concepts
in a first abstract algebra class and may find that applying newly-learned group
theory methods to a familiar, concrete example brings the abstract theory to life.

Various sources discuss the mathematics of Sudoku in general [2, 3, 6, 7].

Counting mini-Sudokus

How many mini-Sudokus are there? They can be enumerated in many ways. One
method is to consider first the four entries in the upper left 2 × 2 block. These
entries must be 1, 2, 3, and 4, but they can be put in any order. This gives 4! = 24
ways of filling this block. The reader should confirm that, once this block has been
filled, for example,

1 2
3 4

*
*

then all the other entries are determined by the Rule of One and the choice of the
two entries marked *. These two entries are arbitrary except that they must be
different, so there are 4 · 3 = 12 ways of choosing them.

Here are the 12 possible mini-Sudokus obtained by filling in the empty cells in
the above example:

A1 =

1 2 3 4
3 4 1 2

2 1 4 3
4 3 2 1

A2 =

1 2 4 3
3 4 2 1

2 1 3 4
4 3 1 2

A3 =

1 2 4 3
3 4 2 1

4 3 1 2
2 1 3 4

A4 =

1 2 3 4
3 4 1 2

4 3 2 1
2 1 4 3

B1 =

1 2 3 4
3 4 2 1

2 1 4 3
4 3 1 2

B2 =

1 2 4 3
3 4 1 2

2 1 3 4
4 3 2 1

B3 =

1 2 4 3
3 4 1 2

4 3 2 1
2 1 3 4

B4 =

1 2 3 4
3 4 2 1

4 3 1 2
2 1 4 3
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C1 =

1 2 3 4
3 4 1 2

2 3 4 1
4 1 2 3

C2 =

1 2 4 3
3 4 2 1

2 3 1 4
4 1 3 2

C3 =

1 2 4 3
3 4 2 1

4 1 3 2
2 3 1 4

C4 =

1 2 3 4
3 4 1 2

4 1 2 3
2 3 4 1

We have labeled these A1, A2, . . . , C3, C4 for future reference.
Now we can calculate the number of mini-Sudokus. There are 24 ways of filling

in the upper left 2× 2 block, and, once that is done, there are 12 ways of filling in
the rest of the grid. This gives a total of 24 · 12 = 288 different mini-Sudokus. (So,
while the number of different 9× 9 Sudokus—6, 670, 903, 752, 021, 072, 936, 960—is
excessively disgusting, the number of different mini-Sudokus is merely two gross!)

Row and column symmetries

Are the 12 mini-Sudokus listed above really that different from one another? After
all, interchanging the last two columns of A1 gives A2. Similarly, interchanging the
bottom two rows of A2 gives A3. Indeed, the mini-Sudokus A1, A2, A3, and A4 differ
only by switching columns and/or rows. We would like to say that these mini-

Sudokus are essentially the same or, using a more standard nomenclature, that
they are equivalent. Similarly, we would like to say that the mini-Sudokus B1, B2,
B3, and B4 are all equivalent (as are C1, C2, C3, and C4).

But are A1 and B1 equivalent? How about A1 and C1? Are all mini-Sudokus
equivalent in some sense?

To answer these questions, we need to be precise about what equivalent means.
And to do that, we have to understand the set of mini-Sudoku symmetries. We
have already discovered some of these symmetries. For example, interchanging the
bottom two rows in any given mini-Sudoku always yields another mini-Sudoku. So
the operation of interchanging these two rows is a mini-Sudoku symmetry. If we
give this symmetry the symbol ρ then ρ(A1) = A4, ρ(A4) = A1, ρ(A2) = A3, etc.
Interchanging the last two columns is also mini-Sudoku symmetry—call it σ. Note
that a mini-Sudoku symmetry is, among other things, a one-to-one onto function
from the set of all mini-Sudokus to itself.

Composing any two symmetries yields another symmetry. For example, inter-
changing the bottom two rows, followed by interchanging the last two columns,
is also a mini-Sudoku symmetry which we would write as σρ. The symmetry that
leaves all mini-Sudokus unchanged is called the identity symmetry and denoted id.
Every symmetry γ has an inverse symmetry γ−1 which undoes whatever the sym-
metry does, that is, γγ−1 = γ−1γ = id. For example, ρ−1 = ρ since switching the
bottom two rows of a mini-Sudoku twice gives the original mini-Sudoku back. For any
three mini-Sudoku symmetries ξ, γ, ρ, we have (ξγ)ρ = ξ(γρ), since function com-
position is associative. In short, these properties mean that the set of mini-Sudoku
symmetries is a group.

Now we can explain equivalence. If K is a group of mini-Sudoku symmetries (that
is, a subgroup of the set of all mini-Sudoku symmetries), then two mini-Sudokus X
and Y are K-equivalent if one can be obtained from the other by applying some
symmetry in K, that is, Y = γ(X) for some γ ∈ K. Since K is a group, this is, in
fact, an equivalence relation. The set of all mini-Sudokus which are K-equivalent
to X is called the K-equivalence class containing X. Every mini-Sudoku is contained
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in a unique K-equivalence class. We say that the group K acts on the set of mini-

Sudokus. An introduction to the theory of groups acting on sets can be found in,
for example, [5] or [9].

As we have already seen, given a mini-Sudoku, there are some easy ways to make
a new mini-Sudoku from it. For example, we could switch the first row with the
second row, and leave the bottom two rows alone. Another example would be to
send Row 1 to Row 3, Row 3 to Row 2, Row 2 to Row 4, and Row 4 to Row 1.

Since there are four rows in a mini-Sudoku, we can regard the set of such row
symmetries as a subgroup R of the symmetric group S4. However, not all row
permutations are symmetries of mini-Sudokus. For example, the permutation taking
Row 1 to Row 2, Row 2 to Row 3, and Row 3 to Row 1, leaving Row 4 unchanged,
takes the mini-Sudoku A1 to

2 1 4 3
1 2 3 4

3 4 1 2
4 3 2 1

which is not a mini-Sudoku. Thus R is isomorphic to a proper subgroup of S4.
Which subgroup?

The answer is that R is isomorphic to the dihedral group D4, the group of
symmetries of a square. One way to see this is to draw a square and to label its
vertices with the rows of the mini-Sudoku, as below. (Do not confuse this square
with the mini-Sudoku grid itself—that comes later!)

Row 1

Row 2

Row 3

Row 4

The group D4 consists of 8 symmetries: four rotations, by 0◦, 90◦, 180◦ and
270◦, and four reflections through the axes indicated by the dotted lines in the
diagram.

Thus, switching the top two rows of a mini-Sudoku corresponds to reflecting the
square about the diagonal axis through the vertices labeled Row 3 and Row 4.
Rotation of the square by 90◦ clockwise corresponds to the mini-Sudoku symmetry
which sends Row 1 to Row 3, Row 3 to Row 2, Row 2 to Row 4, and Row 4 to
Row 1. The reader should check that each symmetry of the square corresponds to
a mini-Sudoku row symmetry and vice versa. The isomorphism between R and D4

is then transparent.
By replacing the word row with the word column in the above discussion, we

get a new group C of mini-Sudoku column symmetries, again isomorphic to D4. If
µ ∈ R and ν ∈ C, then applying µ and then ν to a mini-Sudoku gives the same result
as applying first ν then µ. In other words, row symmetries commute with column
symmetries. This means that, combining the 8 row symmetries with the 8 column
symmetries, we get 64 different symmetries forming a group R × C isomorphic to
D4 ×D4.
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The reader should check that A1 and A2 are C-equivalent but not R-equivalent,
and that A1 and A3 are R-equivalent but not C-equivalent. The mini-Sudokus A1,
A2, A3 and A4 are all in the same R×C-equivalence class. Similar statements hold
for B1, B2, B3 and B4, as well as for C1, C2, C3 and C4.

Is A1 R × C-equivalent to B1 or C1? That is, is there some combination of row
and column symmetries which applied to A1 yields B1 or C1?

To show that the answer to these questions is no, we associate with each column
and row of a mini-Sudoku a partition of the set {1, 2, 3, 4}—specifically, one of the
three partitions

α = {{1, 2}, {3, 4}} β = {{1, 3}, {2, 4}} γ = {{1, 4}, {2, 3}}
The notation { } means that order does not matter. For example, {{1, 2}, {3, 4}},
{{2, 1}, {3, 4}}, {{3, 4}, {1, 2}}, and {{4, 3}, {2, 1}} are all different ways of writ-
ing α.

The partition associated with a row or a column is fairly obvious—just take the
entries and put them in order into {{∗, ∗}, {∗, ∗}} in place of the asterisks. For
example, all the row partitions of A1 are α, and all the column partitions are β. All
the row partitions of B1 are α, but the column partitions are β, β, γ and γ from
left to right. The row partitions of C1 are α, α, γ, γ from top to bottom, but all
the column partitions are β.

For an arbitrary mini-Sudoku X, it is not hard to see that the Rule of One applied
to the top two blocks implies that the partitions associated with Row 1 and Row 2
are the same. Of course, the same holds for Row 3 and Row 4, Column 1 and
Column 2, and Column 3 and Column 4. So X is associated with two row partitions
and two column partitions. We will record all this information as an ordered pair [X]
of (unordered) pairs of partitions that we call the partition type of X. For example,

[A1] = ({α, α}, {β, β}) [B1] = ({α, α}, {β, γ}) [C1] = ({α, γ}, {β, β})
The first entry contains the two row partitions, and the second entry contains the
two column partitions. Note that ({α, α}, {β, γ}) and ({α, α}, {γ, β}) are equal,
but ({α, α}, {β, γ}) is not equal to ({β, γ}, {α, α})). In particular, [A1] = [A2] =
[A3] = [A4], [B1] = [B2] = [B3] = [B4] and [C1] = [C2] = [C3] = [C4].

What makes these partitions useful is how they change under the mini-Sudoku
symmetries we have discussed. For example, applying the eight row symmetries in
R to the first column of A1 yields eight different columns:

1
3

2
4

1
3

4
2

3
1

2
4

3
1

4
2

2
4

1
3

4
2

1
3

2
4

3
1

4
2

3
1

However, each of these columns is associated with the same partition, namely β.
Thus column partitions are invariant under the row symmetries, and, similarly,

row partitions are invariant under the column symmetries. Of course, the column
partitions are simply permuted by column symmetries, and row partitions are per-
muted by row symmetries. Thus we have the following rule:

Rule 1: If mini-Sudokus X and Y are R × C-equivalent, then their
partition types are the same—that is, [X] = [Y].
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Since the partition types of A1, B1, and C1 are distinct, no pair of these mini-

Sudokus is R× C-equivalent.
The situation we have been considering is typical in mathematics. One has a

collection of objects (in our case, mini-Sudokus) and a notion of equivalence, often
from a group action (in our case, the group is R×C). The goal is to determine which
objects are equivalent. In algebra, the objects might be groups, rings, or fields, and
equivalent means isomorphic. In topology, the objects might be topological spaces
or manifolds, and equivalent means homeomorphic. In linear algebra, the objects
might be square matrices, two of which are equivalent if they are similar.

The general strategy for such problems is to attach an invariant to each object—
something which is the same for equivalent objects. The partition type is an in-
variant for mini-Sudokus; that is what Rule 1 says.

Other examples of invariants are the order of a group, the elementary divisors
of a finite abelian group, the characteristic of a field, the fundamental group of
a topological space, the genus of a compact surface, the determinant of a square
matrix, and the Jordan canonical form of a square matrix with complex entries.
The ideal invariant is easy to compute and completely determines whether or not
two objects are equivalent (in which case, we say the invariant is complete). The set
of elementary divisors is a complete invariant for the set of finite abelian groups.
The order of a group is not a complete invariant, however, as nonisomorphic groups
can have the same order. The determinant is not a complete invariant for square
matrices, but the Jordan canonical form is.

When we defined the notion of partition type, we did so carefully, to ensure that
it would be an invariant. In particular, it was necessary to define [X] as an ordered

pair of unordered pairs. For example, let D =

3 4 1 2
2 1 3 4

4 3 2 1
1 2 4 3

. Notice that D and B1

are R× C-equivalent; you can obtain one from the other by swapping the two left
columns with the two right columns. Rule 1 assures us that they have the same
partition type, and indeed we can verify directly that [D] = ({α, α}, {γ, β}) = [B1].
Had we defined [X] as an ordered pair of ordered pairs, however, we would not have
had the desired equality [D] = [B1].

Is partition type a complete invariant for mini-Sudokus with respect to R × C-
equivalence? In other words, can we find two mini-Sudokus which have the same
partition type, but which are not R×C-equivalent? We will see the answer to this
question later.

Geometric symmetries

Have we now found all mini-Sudoku symmetries? Definitely not! After all, a mini-

Sudoku is itself a square, and it is not hard to see that any symmetry of a square
is also a symmetry of mini-Sudokus.
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For example, reflecting a mini-Sudoku across its horizontal axis produces a new
mini-Sudoku. But this symmetry is just the row symmetry that reverses the order
of the rows—it interchanges Row 1 and Row 4, and Row 2 and Row 3. Similarly,
reflecting across the vertical axis is a column symmetry.

What about reflections across a diagonal? For concreteness, let τ be the symme-
try which reflects mini-Sudokus across the main diagonal (from top left to bottom
right). For example,

τ(A1) =

1 3 2 4
2 4 1 3

3 1 4 2
4 2 3 1

.

Since [τ(A1)] = ({β, β}, {α, α}), this mini-Sudoku is not R × C-equivalent to A1.
In other words, the symmetry τ cannot be in R × C. This particular symmetry
will have an important role in our discussion. Note that τ2 = id. This means
that applying τ twice to any mini-Sudoku leaves it unchanged. Hence τ−1 = τ and
Z = {id, τ} is a group of mini-Sudoku symmetries isomorphic to Z2.

Rotating 90◦ clockwise is the result of first reflecting across the main diagonal
and then reflecting across the vertical axis. Applying these two symmetries in the
other order results in a rotation of 270◦. Thus the rotations by 90◦ and 270◦ are
compositions of τ and symmetries in R × C. Rotation by 180◦ is the composition
of the reflections across the horizontal and vertical axes (in either order). So this
rotation is in R×C. Specifically, it is the result of reversing the orders of the rows
and the columns.

For example, rotating B1 by 90◦, 180◦ and 270◦ clockwise we get the mini-Sudokus

S =

4 2 3 1
3 1 4 2

1 4 2 3
2 3 1 4

T =

2 1 3 4
3 4 1 2

1 2 4 3
4 3 2 1

U =

4 1 3 2
3 2 4 1

2 4 1 3
1 3 2 4

with partition types [S] = [U] = ({β, γ}, {α, α}) and [T] = ({α, α}, {β, γ}). Since
[B1] = ({α, α}, {β, γ}), neither S nor U is R× C-equivalent to B1. This means that
the corresponding symmetries, rotation by 90◦ and 270◦, are not in R× C.

What about T? As suggested above, T can be obtained from B1 by reversing the
orders of both the rows and the columns:



8 CARLOS ARCOS, GARY BROOKFIELD, AND MIKE KREBS

B1 =

1 2 3 4
3 4 2 1

2 1 4 3
4 3 1 2

−→

4 3 1 2
2 1 4 3

3 4 2 1
1 2 3 4

−→

2 1 3 4
3 4 1 2

1 2 4 3
4 3 2 1

= T

There is just one symmetry in D4 which we have not yet discussed, namely
reflection across the other diagonal (from top right to bottom left). We leave the
reader the task of showing that this symmetry is not in R×C, but is, nonetheless,
τ composed with a symmetry in R× C.

Note that τ interchanges the rows and the columns of any mini-Sudoku. It sends
Row 1 to Column 1, Row 2 to Column 2, etc. This implies also that τ interchanges
row symmetries and column symmetries. For example, if ρ ∈ R is the row symmetry
which interchanges Row 1 and Row 2, then σ = τρτ is the column symmetry which
interchanges Column 1 and Column 2. This equation can be written as στ = τρ,
which shows that, even though τ does not commute with elements of R×C, it does
so at the cost of interchanging rows and columns. As a consequence, any symmetry
which can be obtained by composing τ and elements of R×C in any order can be
written in the form τµ with µ ∈ R×C. (The same symmetry can also be written in
the form ντ with ν ∈ R×C where ν and µ are the same except for the interchange
of rows and columns.)

We now have 64 symmetries in R × C, and 64 more symmetries of the form τµ
with µ ∈ R × C. In the second category are the rotations by 90◦ and 270◦, as
well as the reflections across the diagonal axes. Together, these symmetries form a
group H of order 128. Since τ does not commute with all elements of R × C, we
know that H is not the direct product of R × C and Z = {id, τ}. Instead, H is a
semi-direct product [9] of these groups:

H = (R× C) o Z.

In other words, R× C is normal in H and has trivial intersection with Z.
Naturally, we will say that two mini-Sudokus X and Y are H-equivalent if one can

be obtained from the other by applying one of the symmetries in H.

Is A1 H-equivalent to B1 or C1? That is, is there some symmetry in H which
applied to A1 yields B1 or C1? Once again, using partition types, we can show that
the answer is no.

Since the group H acts on mini-Sudokus, it also acts on partition types of mini-

Sudokus. By Rule 1, symmetries in H which are also in R×C leave partition types
unchanged. Because τ interchanges the rows and columns of mini-Sudokus, this
symmetry interchanges the associated row and column partitions of any partition
type. For example, since [C1] = ({α, γ}, {β, β}), we have [τ(C1)] = ({β, β}, {α, γ}).

In view of the nature of the symmetry τ , it is natural to call τ(X) the transpose
of X and [τ(X)] the transpose of [X]. So we use the notation [X]T = [τ(X)]. Thus
[X]T is obtained from [X] by switching its two entries. Now, if mini-Sudokus X and
Y are H-equivalent, then X is R × C-equivalent to Y or to τ(Y). We therefore say
that [X] and [Y] are H-equivalent if [X] = [Y] or [X] = [Y]T . Define [X]H to be the H-
equivalence class of [X]. Note that we now have two H-equivalences: H-equivalence
of mini-Sudokus and H-equivalence of partition types.

With Rule 1, we have the following:
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Rule 2: If mini-Sudokus X and Y areH-equivalent, then [X]H = [Y]H .
Since we have [A1]T = ({β, β}, {α, α}), [B1]T = ({β, γ}, {α, α}) and [C1]T =

({β, β}, {α, γ}), no pair of the mini-Sudokus A1, B1 and C1 is H-equivalent.
Is [·]H a complete invariant with respect to H-equivalence? In other words, are

there mini-Sudokus X and Y which have H-equivalent partition types, but which are
not H-equivalent? We will see the answer to this question shortly.

Relabeling symmetries

There is yet one other way of creating a new mini-Sudoku from a given mini-

Sudoku—simply relabel it, that is, apply a permutation of the set {1, 2, 3, 4} to its
entries. For example, starting with A1, we could interchange 1 and 2 to get

V =

2 1 3 4
3 4 2 1

1 2 4 3
4 3 1 2

.

Since [V] = ({α, α}, {γ, γ}), V is not H-equivalent to A1, and so this relabeling
symmetry, switching 1 and 2, is not in H. We have found a new symmetry! Since
there are 4! = 24 different permutations of {1, 2, 3, 4} forming the group S4, there
is a corresponding group L ∼= S4 of relabeling symmetries of mini-Sudokus.

What do the relabeling symmetries do to the partitions α, β, and γ? The answer
is that these symmetries permute them. For example, interchanging 1 and 2 takes
α to α, β to γ, and γ to β. This is why this particular labelling symmetry takes
[A1] = ({α, α}, {β, β}) to [V] = ({α, α}, {γ, γ}).

For another example, consider the relabeling symmetry λ ∈ L which maps 2 to
3, 3 to 4, and 4 to 2, leaving 1 fixed. In cycle notation, we would write λ = (2, 3, 4).
This symmetry takes α to β, β to γ, and γ back to α. It is not hard to see that each
of the six permutations of α, β, and γ comes from exactly 4 relabeling symmetries
in L. Hence we say that two partition types are L-equivalent if one can be obtained
from the other by a permutation of α, β and γ.

We claim that there is no element of H that has the same effect on all mini-

Sudokus as the relabeling symmetry λ = (2, 3, 4). To show that this is so, we
pick a mini-Sudoku with partition type ({α, α}, {β, γ})—for example, B1 will do.
Then λ acting on this mini-Sudoku produces a mini-Sudoku with partition type
({β, β}, {γ, α}). By Rule 2, the new mini-Sudoku is not H-equivalent to the original
one, and so λ cannot be in H. (Another way to see that λ /∈ H is to use Lagrange’s
theorem [5, 9]. No element of order 3 can be in H, since |H| = 128.) Are any of
the symmetries in L also in H? It turns out that only the identity symmetry is in
both groups. We sketch a proof of this fact, leaving the details to the reader. First
observe that if λ ∈ L and σ ∈ H, then applying first λ and then σ has the same
effect as applying first σ and then λ. In other words, λσ = σλ. So if σ ∈ L ∩H,
then σ is in the center of L. But L is isomorphic to S4, whose center contains only
the identity.

How many symmetries do we now have? We know that relabeling symmetries
commute with symmetries in H, so combining all of these symmetries, we get a
group isomorphic to the direct product of H and L. Therefore we define

The mini-Sudoku Symmetry Group = G ∼= H × L.
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This group has order |G| = |H| · |L| = 128 · 24 = 3072. Since G contains all mini-

Sudoku symmetries that we wish to consider, instead of saying that mini-Sudokus
X and Y are G-equivalent, we will just say that they are equivalent. Equivalence
of this type is what is meant by “essentially the same” in the introduction and in
[7, 8].

Why should G be the group of symmetries that we, and others, have chosen to
consider? Here’s why. Let M be the set of all sixteen cells in a 4× 4 grid. Then a
mini-Sudoku is nothing more and nothing less than a function f : M → {1, 2, 3, 4}
which obeys the Rule of One. An element λ ∈ L acts on a mini-Sudoku f by pre-
composition, sending f to λ ◦ f . Likewise, H is a subgroup of the group SM of all
bijective functions from M to itself, and an element σ ∈ H acts on a mini-Sudoku f
by post-composition, sending f to f ◦σ. We have chosen H with care, so that f ◦σ
necessarily still obeys the Rule of One; hence we shall say that every element of H
is mini-Sudoku-preserving. It is tedious but straightforward to verify the converse,
that every mini-Sudoku-preserving element of SM is in H. So we have not chosen G
arbitrarily at all—it is the set of all mini-Sudoku symmetries that can be obtained
by permuting cells and permuting labels.

(For 9 × 9 Sudokus, the group generated by the row and column symmetries
together with the rotations and reflections has order 3, 359, 232, and there are 9!
relabeling symmetries. Hence the Sudoku symmetry group has order 3, 359, 232 ·
9! = 1, 218, 998, 108, 160. We remark that the row symmetry group for an n2 × n2

Sudoku is an n-fold wreath product [8].)
Note that, like the groups H and L, the group G acts on mini-Sudokus and also

on partition types. Define [X]G to be the G-equivalence class of [X]. In other words,
[X]G = [Y]G if and only if [X] is L-equivalent to [Y] or to [Y]T .

Rule 3: If mini-Sudokus X and Y are equivalent, then [X]G = [Y]G.
Now we can see whether A1, B1, and C1 are equivalent. If a mini-Sudoku X is equiv-

alent to A1, then, by Rule 3, [X] is ({α, α}, {β, β}), ({β, β}, {α, α}), ({α, α}, {γ, γ}),
({γ, γ}, {α, α}), ({β, β}, {γ, γ}) or ({γ, γ}, {β, β}). So, in particular, X cannot be
B1 or C1, and so A1 is not equivalent to either of these mini-Sudokus.

What about the equivalence of B1 and C1? If X is equivalent to B1, then,
by Rule 3, [X] is ({α, α}, {β, γ}), ({β, γ}, {α, α}), ({β, β}, {α, γ}), ({α, γ}, {β, β}),
({γ, γ}, {α, β}) or ({α, β}, {γ, γ}). Because [C1] = ({α, γ}, {β, β}), it is possible
that B1 and C1 are equivalent. Since we have not (yet) shown that the converse of
Rule 3 holds, we do not yet know whether B1 is equivalent to C1 or not.

If these mini-Sudokus are equivalent, then the partition types of B1 and C1 suggest
how to construct a symmetry that takes one to the other. There will have to be a re-
labeling symmetry which interchanges α and β, composed with the transposition τ ,
composed (perhaps) with some row and column symmetry:

[B1] = ({α, α}, {β, γ}) −→ ({β, β}, {α, γ}) −→ ({α, γ}, {β, β}) = [C1].

In fact, by choosing the relabeling symmetry, λ ∈ L, which interchanges 2 and 3,
no row or column symmetry is needed:

B1 =

1 2 3 4
3 4 2 1

2 1 4 3
4 3 1 2

λ−→

1 3 2 4
2 4 3 1

3 1 4 2
4 2 1 3

τ−→

1 2 3 4
3 4 1 2

2 3 4 1
4 1 2 3

= C1.
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This shows that B1 and C1 are equivalent, and hence that B1, B2, B3, B4, C1, C2,
C3, and C4 are all in the same equivalence class. Since A1 and B1 are not equivalent,
there must be a second equivalence class containing A1, A2, A3, and A4.

Now we are ready for the main (and only) theorem of this article.

Theorem. There are exactly two equivalence classes of mini-Sudokus:
C1: All mini-Sudokus with the following partition types:

({α, α}, {β, β}) ({α, α}, {γ, γ}) ({β, β}, {γ, γ})
({β, β}, {α, α}) ({γ, γ}, {α, α}) ({γ, γ}, {β, β})

C2: All mini-Sudokus with the following partition types:

({α, α}, {β, γ}) ({β, β}, {α, γ}) ({γ, γ}, {α, β})
({β, γ}, {α, α}) ({α, γ}, {β, β}) ({α, β}, {γ, γ})

Proof. We know already that there are at least two distinct equivalence classes.
Let X be a mini-Sudoku. By applying a suitable relabeling symmetry, the top left

box of X can be put in the form 1 2
3 4

, and so X is equivalent to one of the 12

mini-Sudokus A1, A2, . . . , C3, C4. From the above discussion, X is equivalent to either
A1 or B1. But we have seen already that, if X is equivalent to A1, then its partition
type is as described in C1, and if X is equivalent to B1, then its partition type is as
described in C2. �

(A similar argument in [7] purports to demonstrate the same result; in fact, the
line of reasoning in that article shows only that there are at most two equivalence
classes. What is missing is an invariant to distinguish the two classes.)

There are exactly 24 mini-Sudokus L-equivalent to each of A1, A2, . . . , C3, C4, and
hence there are 4 · 24 = 96 mini-Sudokus in C1 and 8 · 24 = 192 mini-Sudokus in C2.

Since we now know the partition types that are in each of the equivalence classes,
it is easy to see that the converse of Rule 3 holds, that is, mini-Sudokus X and Y are
equivalent if and only if [X] and [Y] are equivalent.

Notice that the mini-Sudokus A1, A2, A3, and A4 have either two or four distinct en-
tries on the main diagonal, whereas the mini-Sudokus B1, B2, . . . , C3, C4 have exactly
three distinct entries on the main diagonal. Since any mini-Sudoku is L-equivalent
to one of these 12, and the number of distinct entries on the main diagonal is un-
changed by relabeling symmetries, it now quite easy to tell which equivalence class
a mini-Sudoku X belongs to. If X has two or four distinct entries on the main diagonal
it must be L-equivalent to A1, A2, A3, or A4, and so X is in C1. If X has three distinct
entries on the main diagonal it must be L-equivalent to one of B1, B2, . . . , C3, C4, and
so X is in C2. Hence the diagonal entries of X suffice to determine its equivalence
class.

It is, of course, easier to count entries along the main diagonal of a mini-Sudoku
than to write down its partition type. So why bother with partition types at
all? The reason is that they are better suited for weaker forms of equivalence,
such as R × C-equivalence and H-equivalence. In fact, the following converses to
Rules 1 and 2 assert that [·] is a complete invariant of mini-Sudokus, modulo R×C-
equivalence and that [·]H is a complete invariant with respect to H-equivalence:
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Proposition. Let X and Y be mini-Sudokus.
(1) If [X] = [Y], then X and Y are R× C-equivalent.
(2) If [X]H = [Y]H , then X and Y are H-equivalent.

Proof. (1) Suppose [X] = [Y]. Recall that Row 1 and Row 2 of X are associated with
the same partition—either α, β, or γ—and that the same is true of Rows 3 and 4.
For convenience, we will call these four partitions, in order, the row partitions of X.

It may be that the row partitions of X match (row for row) the row partitions of
Y, in which case let Y1 = Y. If this is not the case, then, since [X] = [Y], applying the
blockwise row symmetry that switches Rows 1 and 2 with Rows 3 and 4 to Y, yields
a mini-Sudoku Y1 whose row partitions match those of X. Similarly, by applying
a blockwise column symmetry to Y1 if necessary, we obtain a mini-Sudoku Y2 such
that both the row and column partitions of X and Y2 match up, and such that Y2

is R× C-equivalent to Y.
The two row symmetries that switch Rows 1 and 2, and Rows 3 and 4, and the

two column symmetries that switch Columns 1 and 2, and Columns 3 and 4, can
be used to put any mini-Sudoku into the form

1 * * *
* * * *

* * 1 *
* * * *

.

Moreover, this can be done without changing row and column partitions. So by
applying this procedure to Y2, we obtain a mini-Sudoku Y3, which is R×C-equivalent
to Y2, such that X and Y3 have this special form, in addition to having matching
row and column partitions.

Since X and Y3 have the same top row partition, it follows that they have the
same entries in Row 1, Column 2. Similarly, using the leftmost column partition,
we see they have the same entries in Row 2, Column 1. Thus, they have the same
upper-left block. Likewise, we find that they have the same lower-right block. We
can then use the Rule of One to fill in the remaining entries in the grid and conclude
that X = Y3. The result follows.

(2) We know that [X] = [Y] or [X] = [Y]T. So by (1), X is R × C-equivalent to Y
or to YT. In either case, X is H-equivalent to Y. �

More mini-Sudoku puzzles

Though we now know how many mini-Sudokus there are and how many of them
are essentially different, many mini-Sudokus puzzles remain for the reader to solve.
Here are some suggestions:

(1) According to the theorem, if X is a mini-Sudoku, then [X] = ({α, α}, {α, α}),
[X] = ({α, β}, {α, β}), [X] = ({α, α}, {α, β}), and [X] = ({α, β}, {α, γ}) are
not possible. Show directly that it is not possible for a row partition to
equal a column partition.

(2) For a mini-Sudoku X, let det X be the determinant of X thought of as a 4× 4
matrix. Then det X is unchanged or changes sign under the symmetries
in H. Hence, if X and Y are H-equivalent, then |det X| = |det Y|. Is the
converse true?
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It might be useful to replace the entries, 1, 2, 3 and 4, by variables, w,
x, y and z, so that det X is a polynomial in the four variables. For example,

det A1 = det


w x y z
y z w x
x w z y
z y x w


= −(w + x− y − z)(w + y − x− z)(w + z − x− y)(w + x+ y + z)

How do these determinants change under relabeling symmetries? Can such
determinants be used to determine whether mini-Sudokus are H-equivalent
or equivalent?

(3) Prove that R ∩ C = (R× C) ∩ Z = {id}.
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