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Abstract

A k-fold colouring of a graph is a function that assigns to each

vertex a set of k colours, so that the colour sets assigned to adjacent
vertices are disjoint. The k-th chromatic number of a graph G, de-

noted by χk(G), is the minimum total number of colours used in a
k-fold colouring of G. Let µ(G) denote the Mycielskian of G. For any

positive integer k, it holds that χk(G) + 1 ≤ χk(µ(G)) ≤ χk(G) + k
[5]. Although both bounds are attainable, it was proved in [7] that if

k ≥ 2 and χk(G) ≤ 3k−2, then the upper bound can be reduced by 1,
i.e., χk(µ(G)) ≤ χk(G)+k−1. We conjecture that for any n ≥ 3k−1,

there is a graph G with χk(G) = n and χk(µ(G)) = n + k. This is
equivalent to conjecturing that the equality χk(µ(K(n, k))) = n + k
holds for Kneser graphs K(n, k) with n ≥ 3k − 1. We confirm this

conjecture for k = 2, 3, or when n is a multiple of k or n ≥ 3k2/ lnk.
Moreover, we determine the values of χk(µ(C2q+1)) for 1 ≤ k ≤ q.
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1 Introduction

In search of graphs with large chromatic number but small clique size, My-

cielski [6]introduced the following construction: Let G be a graph with vertex

set V and edge set E. Let V be a copy of V , V = {x : x ∈ V }, and let u

be a new vertex. The Mycielskian of G, denoted by µ(G), is the graph with

vertex set V ∪ V ∪ {u} and edge set E ′ = E ∪ {xy : xy ∈ E} ∪ {ux : x ∈ V }.
The vertex u is called the root of µ(G); and for any x ∈ V , x is called the

twin of x. For a graph G, denote χ(G) and ω(G), respectively, the chromatic

number and the clique size of G. It is straightforward to verify that for any

graph G with ω(G) ≥ 2, we have ω(µ(G)) = ω(G) and χ(µ(G)) = χ(G) + 1.

Hence, one can obtain triangle free graphs with arbitrarily large chromatic

number, by repeatedly applying the Mycielski construction to K2.

Multiple-colouring of graphs was introduced by Stahl [10], and has been

studied extensively in the literature. For any positive integers n and k, we

denote by [n] the set {0, 1, . . . , n− 1} and
(

[n]
k

)

the set of all k-subsets of [n].

A k-fold n-colouring of a graph G is a mapping, f : V →
(

[n]
k

)

, such that for

any edge xy of G, f(x)∩f(y) = ∅. In other words, a k-fold colouring assigns

to each vertex a set of k colours, where no colour is assigned to any adjacent

vertices. Moreover, if all the colours assigned are from a set of n colours,

then it is a k-fold n-colouring. The k-th chromatic number of G is defined as

χk(G) = min{n : G admits a k-fold n-colouring}.

The k-fold colouring is an extension of conventional vertex colouring. A

1-fold n-colouring of G is simply a proper n-colouring of G, so χ1(G) = χ(G).

It is known [8] and easy to see that for any k, k′ ≥ 1, χk+k′(G) ≤ χk(G)+

χk′(G). This implies χk(G)
k

≤ χ(G). The fractional chromatic number of G is
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defined by

χf(G) = inf{χk(G)

k
: k = 1, 2, . . .}.

Thus χf (G) ≤ χ(G) (cf. [8]).

For a graph G, it is natural to ask the following two questions:

1. What is the relation between the fractional chromatic number of G and

the fractional chromatic number of the Mycielskian of G?

2. What is the relation between the k-th chromatic number of G and the

k-th chromatic number of the Mycielskian of G?

The first question was answered by Larsen, Propp and Ullman [4]. It turned

out that the fractional chromatic number of µ(G) is determined by the frac-

tional chromatic number of G: For any graph G,

χf(µ(G)) = χf(G) +
1

χf(G)
.

The second question is largely open. Contrary to the answer of the first

question in the above equality, the k-th chromatic number of µ(G) is not

determined by χk(G). There are graphs G and G′ with χk(G) = χk(G
′) but

χk(µ(G)) 6= χk(µ(G′)). So it is impossible to express χk(µ(G)) in terms of

χk(G). Hence, we aim at establishing sharp bounds for χk(µ(G)) in terms of

χk(G). Obviously, for any graph G and any positive integer k, χk(µ(G)) ≤
χk(G) + k. Combining this with a lower bound established in [5] we have:

χk(G) + 1 ≤ χk(µ(G)) ≤ χk(G) + k. (1)

Moreover, it is proved in [5] that for any k both the upper and the lower

bounds in (1) can be attained. On the other hand, it is proved in [7] that

if χk(G) is relatively small compared to k, then the upper bound can be

reduced.

3



Theorem 1 [7] If k ≥ 2 and χk(G) = n ≤ 3k−2, then χk(µ(G)) ≤ n+k−1.

In this article, we prove that for graphs G with χk(G) relatively large com-

pared to k, then the upper bound in (1) cannot be improved. We conjecture

that the condition n ≤ 3k − 2 in Theorem 1 is sharp.

Conjecture 1 If n ≥ 3k − 1, then there is a graph G with χk(G) = n and

χk(µ(G)) = n + k.

A homomorphism from a graph G to a graph G′ is a mapping f : V (G) →
V (G′) such that f(x)f(y) ∈ E(G′) whenever xy ∈ E(G). If f is a homomor-

phism from G to G′ and c′ is a k-fold n-colouring for G′, then the mapping

defined as c(x) = c′(f(x)) is a k-fold n-colouring of G. Thus χk(G) ≤ χk(G
′).

For positive integers n ≥ 2k, the Kneser graph K(n, k) has vertex set
(

[n]
k

)

in which x ∼ y if x ∩ y = ∅. It follows from the definition that a graph

G has a k-fold n-colouring if and only if there is a homomorphism from G

to K(n, k). In particular, if k′ = qk for some integer q, then it is easy to

show that χk′(K(n, k)) = qn. If k′ is not a multiple of k, then determining

χk′(K(n, k)) is usually a difficult problem. The well-known Kneser-Lovász

Theorem [3] gives the answer to the case for k′ = 1: χ(K(n, k)) = n−2k+2.

For k′ ≥ 2, the values of χk′(K(n, k)) are still widely open.

Notice that, a homomorphism from G to G′ induces a homomorphism

from µ(G) to µ(G′). Hence, we have

max{χk(µ(G)) : χk(G) = n} = χk(µ(K(n, k))).

Therefore, Conjecture 1 is equivalent to

Conjecture 2 If n ≥ 3k − 1, then χk(µ(K(n, k))) = n + k.

In this paper, we confirm Conjecture 2 for the following cases:
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• n is a multiple of k (Section 2),

• n ≥ 3k2/ ln k (Section 2),

• k ≤ 3 (Section 3).

It was proved in [5] that the lower bound in (1) is sharp for complete

graphs Kn with k ≤ n. That is, if k ≤ n, then χk(µ(Kn)) = χk(Kn) + 1 =

kn + 1. In Section 4, we generalize this result to circular complete graphs

Kp/q (Corollary 10). Also included in Section 4 are complete solutions of the

k-th chromatic number for the Mycielskian of odd cycles C2q+1 with k ≤ q.

2 Kneser graphs with large order

In this section, we prove for any k, if n = qk for some integer q ≥ 3 or

n ≥ 3k2/ ln k, then χk(µ(K(n, k))) = n + k.

In the following, the vertex set of K(n, k) is denoted by V . The Myciel-

skian µ(K(n, k)) has the vertex set V ∪ V ∪ {u}. For two integers a ≤ b, let

[a, b] denote the set of integers i with a ≤ i ≤ b.

Lemma 2 For any positive integer k, χk(µ(K(3k, k))) = 4k.

Proof. Suppose to the contrary, χk(µ(K(3k, k))) ≤ 4k−1. Let c be a k-fold

colouring of µ(K(3k, k)) using colours from the set [0, 4k−2]. Without loss of

generality, assume c(u) = [0, k−1]. Let X = {x ∈ V : c(x)∩c(u) = ∅}. Then

X is an independent set in K(3k, k); for if v, w ∈ X and v ∼ w, then v, w

have a common neighbor, say x, in V , implying that c(v), c(w), c(x) and c(u)

are pairwise disjoint. So |c(u)|+ |c(x)|+ |c(v)|+ |c(w)| = 4k, a contradiction.

Hence, the vertices of V can be partitioned into k + 1 independent sets: X

and Ai = {v ∈ V : i = min c(v)}, i = 0, 1, . . . , k − 1, contradicting the fact

that χ(K(3k, k)) = k + 2.

5



Lemma 3 For any n ≥ 3k − 1,

χk(µ(K(n, k))) ≥ χk(µ(K(n − k, k))) + k.

Proof. Suppose χk(µ(K(n, k))) = m. Let c be a k-fold colouring for

µ(K(n, k)) using colours from [0, m − 1]. Assume c(u) = [0, k − 1]. Since

χ(K(n, k)) = n − 2k + 2 > k, there exists some vertex v in V with c(v) ∩
[0, k − 1] = ∅. Without loss of generality, assume c(v) = [k, 2k − 1]. Let

N be the set of neighbors of v in V , and let N = {w ∈ V : w ∈ N}.
Then the subgraph of µ(K(n, k)) induced by N ∪ N ∪ {u} is isomorphic to

µ(K(n−k, k)). Denote this subgraph by G′. The colouring c restricted to G′

is a k-fold colouring using colours from [0, m− 1] \ [k, 2k − 1], which implies

χk(G
′) = χk(µ(K(n − k, k))) ≤ m − k.

Corollary 4 For any integers q ≥ 3 and k ≥ 1, χk(µ(K(qk, k))) = (q +1)k.

Next we prove that χk(µ(K(n, k))) = n+k holds for n ≥ 3k2/ ln k. It was

proved by Hilton and Milner [2] that if X is an independent set of K(n, k)

and ∩x∈Xx = ∅, then |X| ≤ 1 +
(

n−1
k−1

)

−
(

n−k−1
k−1

)

.

For any positive integer k, let φ(k) be the minimum n such that

n ((n − k − 1)(n − k − 2) . . . (n − 2k + 1) − (k − 1)!)

k(n − 1)(n − 2) . . . (n − k + 1)
> 1. (2)

Theorem 5 Let n and k be integers with n ≥ φ(k). Then

χk(µ(K(n − 1, k))) ≤ χk(µ(K(n, k))) − 1.

Proof. Let t = χk(µ(K(n, k))) and let c be a k-fold t-colouring of µ(K(n, k))

using colours from [0, t − 1]. Assume c(u) = [0, k − 1]. For i ∈ [0, t − 1], let

Si = {x ∈ V : i ∈ c(x)}. Then
t−1
∑

i=0
|Si| = k

(

n
k

)

, since each vertex appears in

exactly k of the Si’s.
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Since t ≤ n + k, by a straightforward calculation, inequality (2) implies

that

k

(

n

k

)

> (t − k)

(

1 +

(

n − 1

k − 1

)

−
(

n − k − 1

k − 1

))

+ k

(

n − 1

k − 1

)

.

Therefore, at least k + 1 of the Si’s satisfy the following:

|Si| > 1 +

(

n − 1

k − 1

)

−
(

n − k − 1

k − 1

)

.

Hence there exists i∗ 6∈ [0, k−1] with |Si∗| > 1+
(

n−1
k−1

)

−
(

n−k−1
k−1

)

. This implies

∩x∈Si∗
x 6= ∅. Note that the intersection ∩x∈Si∗

x contains only one integer.

For otherwise, assume a ∈ W = ∩x∈Si∗
x and W \{a} 6= ∅. Let x′ be a vertex

containing a, and y′ be a vertex such that y′ ∩W = W \ {a} and y′ ∩ x′ 6= ∅.
Then S ′ = Si∗ ∪{x′, y′} is an independent set with |S ′| > 1+

(

n−1
k−1

)

−
(

n−k−1
k−1

)

and ∩x∈S′x = ∅, a contradiction.

Assume ∩x∈Si∗
x = {a}. If y ∈ K(n, k) and y intersects every x ∈ Si∗ ,

then a ∈ y. For otherwise, S ′ = Si∗ ∪{y} is an independent set with Si∗ ⊂ S ′

and ∩x∈S′x = ∅, a contradiction. We conclude that for any y ∈ K(n, k), if

a 6∈ y, then none of Si∗∪{y} and Si∗∪{y} is an independent set in µ(K(n, k)),

which implies that i∗ 6∈ c(y) and i∗ 6∈ c(y).

By letting a = n, the restriction of c to the subgraph µ(K(n−1, k)) gives

a k-fold (t − 1)-colouring of µ(K(n − 1, k)).

Corollary 6 For any n ≥ max{2k + 1, N}, χk(µ(K(n, k))) = n + k, where

N is defined as follows. If φ(k) = qk + 1, then N = qk; otherwise, N is the

smallest integer such that N is a multiple of k and N ≥ φ(k).

Proof. By Corollary 4, χk(µ(K(N, k))) = N + k. By Theorem 5,

χk(µ(K(n, k))) ≥ (n −N) + χk(µ(K(N, k))) = n + k.
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Although it might be hard to find a simple formula for the function φ(k)

defined in the above, one can easily learn that φ(k) has order k2/ ln k.

Corollary 7 If k ≥ 4 and n ≥ 3k2/ ln k, then χk(µ(K(n, k))) = n + k.

Proof. Assume n ≥ 3k2/ ln k. Then

n[(n − k − 1)(n − k − 2) . . . (n − 2k + 1) − (k − 1)!]

k(n − 1)(n − 2) . . . (n − k + 1)

>
(n − 1)(n − k − 1)(n − k − 2) . . . (n − 2k + 1)

k(n − 1)(n − 2) . . . (n − k + 1)

>
n − 1

k

(

n − 2k

n − k

)k−1

>
n − 1

k
e−k(k−1)/(n−2k)

>
2k

ln k
e−k(k−1) ln k/2k2

>
2k√
k ln k

> 1.

Therefore, n ≥ N for the N defined in Corollary 6, so the result follows.

In Corollary 7, 3k2/ ln k can be replaced by (1 + ε)k2/ ln k for any ε > 0,

provided that k is large enough.

3 K(n, 2) and K(n, 3)

In this section, we confirm Conjecture 2 for k ≤ 3. The case k = 1 was proved

by Mycielski. For k = 2, 3, the value of φ(k) defined in (2) in Section 2 can

be easily determined: φ(2) = 6 and φ(3) = 10. Thus to prove Conjecture 2

for k = 2, 3, by Corollary 6 it suffices to show that χ2(µ(K(5, 2))) = 7 and

χ3(K(8, 3)) = 11. As it was proved in [5] that χ2(µ(K(5, 2))) = 7, the case

k = 2 is settled.
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In the following, we confirm the case k = 3.

Theorem 8 χ3(µ(K(8, 3))) = 11.

Proof. As χk(K(8, 3)) ≤ 11, it suffices to show χk(K(8, 3)) > 10. Assume to

the contrary, there exists a 3-fold 10-colouring c of µ(K(8, 3)), using colours

from the set {a0, a1, . . . , a9}. For simplicity, we denote each vertex in V by

(ijk), where i, j, k ∈ {0, 1, 2, . . . , 7}, and its twin by (ijk); and for s ≤ t, we

denote the set of colours {as, as+1, . . . , at} by a[s, t].

Assume c(u) = a[0, 2]. Let X = {x ∈ V : c(x) ∩ c(u) = ∅}. For x ∈ X

and i 6∈ x, let Mi(x) = {v ∈ V : v \ x = {i}}. For a set A of vertices, let

c〈A〉 = ∪x∈Ac(x).

Claim 1 For any x ∈ X, there is at most one integer i 6∈ x for which

c〈Mi(x)〉 6⊆ c(x) ∪ c(u).

Proof. Assume the claim is not true. Without loss of generality, assume

that x = (012), c(x) = a[3, 5] and c〈M3(x)〉, c〈M7(x)〉 6⊆ c(x)∪c(u) = a[0, 5].

We may assume a6 ∈ c〈M3(x)〉 and at ∈ c〈M7(x)〉 for some t ∈ [6, 9]. For

any i, j, k ∈ [4, 7], (ijk) ∼ x, u, M3(x). Hence c(ijk) = a[7, 9]. Similarly, for

any i, j, k ∈ [3, 6], c(ijk) = a[6, 9]−{at}. As c(456) = a[7, 9] = a[6, 9]−{at},
we conclude that t = 6.

Let W := {(034), (157), (026), (134), (257)}. Every vertex in W is adja-

cent to some (ijk), with i, j, k ∈ [4, 7] or i, j, k ∈ [3, 6]. Hence, c〈W 〉 ⊆ a[0, 6].

This is impossible, as W induces a C5 while it is known [10] that χ3(C5) = 8.

Claim 2 Let x, y ∈ X. If x 6= y, then c(x) 6= c(y). Moreover, if x ∩ y 6= ∅,
then |c(x) ∩ c(y)| = 2.
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Proof. Let x, y ∈ X, x 6= y. Assume to the contrary, c(x) = c(y). Then

x ∩ y 6= ∅. Assume |x ∩ y| = 2, say x = (012), y = (013) ∈ X and c(y) =

c(x) = a[3, 5]. Then c(245), c(367) ⊆ a[6, 9], implying |c(245) ∩ a[0, 2]| ≥ 2

and |c(367) ∩ a[0, 2]| ≥ 2. This is impossible as (367) ∼ (245).

Next, assume |x ∩ y| = 1, say x = (012), y = (234) and c(x) = c(y) =

a[3, 5]. By Claim 1, there exists i ∈ {5, 6, 7}, say i = 5, c〈Mi(x)〉 ⊆
c(x) ∪ c(u) = a[0, 5]. Hence c(015) = a[0, 2] (as (015) ∼ (234)). Then

c(346), c(015) ⊆ a[6, 9], a contradiction, as 345 ∼ 015. Hence, c(x) 6= c(y).

To prove the moreover part, assume x∩ y 6= ∅. Then there is some z ∈ V

with z ∼ x, y. Thus c(x) ∪ c(y) ∪ c(u) is disjoint from c(z). This implies

|c(x) ∩ c(y)| = 2.

In the remainder of the proof, we use Schrijver graphs. For n ≥ k, the

Schrijver graph, denoted by S(n, k), is a subgraph of K(n, k) induced by the

vertices that do not contain any pair of consecutive integers in the cyclic

order of [n]. Schrijver [9] proved that χ(K(n, k)) = χ(S(n, k)) and S(n, k) is

vertex critical.

Denote the subgraph of K(8, 3) induced by V −X by K(8, 3) \X. Then

K(8, 3) \X has a 3-vertex-colouring f , defined by f(v) = min{c(v)}. Hence,

S(8, 3) can not be a subgraph of K(8, 3) \X. In what follows, we frequently

use the fact that if, for some ordering of {0, 1, . . . , 7}, each vertex x ∈ X

contains a pair of cyclically consecutive integers in {0, 1, . . . , 7}, then K(8, 3)\
X contains S(8, 3) as a subgraph, which is a contradiction.

Claim 3 For any x, y ∈ X, x ∩ y 6= ∅.

Proof. Assume to the contrary, x = (012), y = (567) ∈ X. Suppose there is

a vertex z ∈ X\{x, y}which intersects both x, y. By Claim 2, |c(z)∩c(x)| = 2

and |c(z)∩ c(y)| = 2, which is a contradiction, as c(x)∩ c(y) = ∅. Therefore,
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any z ∈ X \ {x, y} is either disjoint from x or disjoint from y. We partition

X into two sets, Ax and Ay, that include vertices disjoint from x or from y,

respectively.

Next we claim Ax = {y} or Ay = {x}. For each z ∈ Ay, applying the

above discussion on x and y to z and y, one can show that for any z′ ∈ Ax,

z ∩ z′ = ∅. Hence, if Ay − {x} 6= ∅ and Ax − {y} 6= ∅, then we may assume

z ⊆ [0, 3] for all z ∈ Ay, and z′ ⊆ [4, 7] for all z′ ∈ Ax. This implies that every

vertex of X contains two consecutive integers. Thus, Ax = {y} or Ay = {x}.
Assume Ax = {y}. If (024) 6∈ X, then clearly every vertex of X contains

two consecutive integers. Suppose z1 = (024) ∈ X. If (023) 6∈ X, then

by exchanging 3 and 4 in the cyclic ordering, every vertex in X contains

two consecutive integers. Assume z2 = (023) ∈ X. By Claim 1, for some

i ∈ {1, 2}, c(zi) ⊆ c(x) ∪ c(u), and hence c(x) = c(zi) (since zi ∈ X),

contradicting Claim 2.

It follows from Claims 2 and 3 that for any distinct x, y ∈ X, |c(x) ∩
c(y)| = 2. There are at most five 3-subsets of a[3, 9] that pairwisely have two

elements in common. Thus |X| ≤ 5. By Claim 3, it is straightforward to

verify that there exists an ordering of {0, 1, 2, . . . , 7} such that each x ∈ X

contains a pair of cyclic consecutive integers. The details are omitted, as

they are a bit tedious yet apparent.

4 Circular cliques and odd cycles

For any positive integers p ≥ 2q, the circular complete graph (or circular

clique) Kp/q has vertex set [p] in which ij is an edge if and only if q ≤
|i− j| ≤ p− q. Circular cliques play an essential role in the study of circular

chromatic number of graphs (cf. [12, 13]). A homomorphism from G to Kp/q

is also called a (p, q)-colouring of G. The circular chromatic number of G is
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defined as

χc(G) = inf{p/q : G has a (p, q)-colouring}.

It is known [12] that for any graph G, χf(G) ≤ χc(G). Moreover, a result in

[1] implies that if χf(G) = χc(G) then for any positive integer k,

χk(G) = dkχf(G)e.

As χc(Kp/q) = χf (Kp/q) = p/q, we have

χk(Kp/q) = dkp/qe.

Let m = dkp/qe. Indeed, a k-fold m-colouring c of Kp/q, using colours

a0, a1, . . . , am−1, can be easily constructed as follows. For j = 0, 1, . . . , m−1,

assign colour aj to vertices jq, jq+1, . . . , (j+1)q−1. Here the calculations are

modulo p. Observe that c is a k-fold colouring for Kp/q, because each colour

aj is assigned to an independent set of Kp/q, and the union ∪m−1
j=0 {jq, jq +

1, . . . , (j + 1)q − 1} = [0, mq − 1] is an interval of mq consecutive integers.

As mq ≥ kp, for each integer i, there are at least k integers t ∈ [0, mq − 1]

that are congruent to i modulo p, i.e., there are at least k colours assigned

to each vertex i of Kp/q. (Here, for convenience, we modify the definition of

a k-fold colouring to be a colouring which assigns to each vertex a set of at

least k colours.)

Now we extend the above k-fold colouring c of Kp/q to a k-fold colouring

for µ(Kp/q) by assigning at least k colours to each vertex in V ∪ {u}. Let

S = a[m− k, m − 1] and let c(u) = S. For i ∈ V (Kp/q), let g(i) = c(i) \ S.

Then |g(i)| is equal to the number of integers in the interval [0, (m− k)q− 1]

that are congruent to i modulo p. Hence |g(i)| ≥ b(m − k)q/pc. Let b =

k − b(m − k)q/pc, and let c(i) = g(i) ∪ {am, am+1, . . . , am+b−1}. Then c is a

k-fold (m + b)-colouring of µ(Kp/q), implying χk(µ(Kp/q)) ≤ m + b.
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Theorem 9 Suppose p, q, k are positive integers with p ≥ 2q. Then

dkp/q + kq/pe ≤ χk(µ(Kp/q)) ≤ dkp/qe + dkq/pe.

Proof. The lower bound follows from the result that χf(µ(Kp/q)) = χf(Kp/q)+

1
χf (Kp/q)

= p
q
+ q

p
. For the upper bound, we have shown in the previous para-

graph that χk(µ(Kp/q)) ≤ m+b, where m = dkq/pe and b = k−b(m−k)q/pc.
By letting m = (kp + s)/q, easy calculation shows that b = d(kq − s)/pe ≤
dkq/pe.

It was proved in [5] that χk(µ(Kn)) = χk(Kn) + 1 = kn + 1 holds for

k ≤ n. By Theorem 9, this result can be generalized to circular cliques.

Corollary 10 If k ≤ p/q, then χk(µ(Kp/q)) = χk(Kp/q) + 1.

Proof. As χk(µ(G)) ≥ χk(G) + 1 holds for any graph G, it suffices to note

that when k ≤ p/q, Theorem 9 implies that χk(µ(Kp/q)) ≤ χk(Kp/q) + 1.

Corollary 11 If k = tq is a multiple of q, then χk(µ(Kp/q)) = tp + dkq/pe;
if k = sp is a multiple of p, then χk(µ(Kp/q)) = sq + dkp/qe.

Corollary 11 implies that for any integer s with 1 ≤ s ≤ dk/2e, there is a

graph G with χk(µ(G)) = χk(G) + s.

If p = 2q + 1, then Kp/q is the odd cycle C2q+1. Assume k ≤ q. By

Theorem 9,

2k + d(k + 1)/2e ≤ χk(µ(C2q+1)) ≤ 2k + d(k + 2)/2e.

In particular, if k is even, then χk(µ(C2q+1)) = 5k/2 + 1; if k is odd, then

χk(µ(C2q+1)) ∈ {2k+ k+1
2

, 2k+ k+3
2
}. It was proved in [5] that χk(µ(C2q+1)) =

2k + k+3
2

if k is odd and k ≤ q ≤ 3k−1
2

. In the next theorem, we completely

determine the value of χk(µ(C2q+1)) for 3 ≤ k ≤ q.
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Theorem 12 Let k be an odd integer, k ≥ 3. Then

χk(µ(C2q+1)) =

{

2k + k+3
2

, if k ≤ q ≤ 3k+3
2

;

2k + k+1
2

, if q ≥ 3k+5
2

.

Proof. Denote V (C2q+1) = {v0, v1, . . . , v2q}, where vi ∼ vi+1. Throughout

the proof, all the subindices are taken modulo 2q + 1.

We first consider the case k ≤ q ≤ 3k+3
2

. Assume to the contrary,

χk(µ(C2q+1)) = 2k + k+1
2

. Let c be a k-fold colouring of µ(C2q+1) us-

ing colours from the set a[0, 2k + k−1
2

]. Without loss of generality, assume

c(u) = a[0, k − 1].

Denote by X the colour set a[k, 2k + k−1
2

]. For i = 0, 1, . . . , 2q, let Wi =

c(vi), Xi = Wi ∩ X, and Yi = Wi ∩ a[0, k − 1]. Then Wi = Yi ∪ Xi and

|Xi|+ |Yi| = k. For each i, since c(vi) ⊆ X and (c(vi−1)∪ c(vi+1))∩ c(vi) = ∅,
we have |Xi−1 ∪ Xi+1| ≤ |X| − k = (k + 1)/2. As |Wi ∪ Wi+1| = 2k, we have

|Xi ∪ Xi+1| ≥ k. Hence, for each i, k−1
2

≤ |Xi| ≤ k+1
2

.

Partition V = {v0, v1, . . . , v2q} into the following two sets:

A1 = {vi ∈ V : |Xi| = k−1
2
},

A2 = {vi ∈ V : |Xi| = k+1
2
}.

Observation A. All the following hold for every i ∈ [0, 2q]:

1. If vi ∈ A1, then vi−1, vi+1 ∈ A2.

2. If vi, vi+2 ∈ A2, then Xi = Xi+2; if vi, vi+2 ∈ A1, then |Xi \ Xi+2| ≤ 1

and |Xi+2 \ Xi| ≤ 1.

3. Assume vi ∈ A1 for some i. If vi+2 ∈ A2 (or vi−2 ∈ A2, respectively),

then Xi ⊆ Xi+2 (or Xi ⊆ Xi−2, respectively).

For each i, as |Xi| + |Yi| = k, one has k−1
2

≤ |Yi| ≤ k+1
2

. Similar to the

above discussion on Xi’s, we have:

Observation B. The following hold for all i ∈ [0, 2q]:
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1. If vi, vi+2 ∈ A1, then Yi = Yi+2.

2. Assume vi ∈ A1 for some i. If vi+2 ∈ A2 (or vi−2 ∈ A2, respectively),

then Yi+2 ⊆ Yi (or Yi−2 ⊆ Yi, respectively).

3. Assume vi, vi+2 ∈ A2 for some i. If vi+1 ∈ A1, then Yi = Yi+2; if

vi+1 ∈ A2, then |Yi+2 \ Yi| ≤ 1 and |Yi \ Yi+2| ≤ 1.

By Observation A (1), there exists some i such that vi, vi+1 ∈ A2. Without

loss of generality, assume v0, v1 ∈ A2.

Claim 1. |A1| = k + 2. Moreover, all the following hold:

1.
⋃2q

i=0 Xi = X0 ∪ X1 ∪ {w∗} for some w∗ /∈ X0 ∪ X1.

2. For each vi ∈ A1, i ∈ [0, 2q], there exists some x ∈ Xi−2 \ Xi. In

addition, if x 6= w∗, then x ∈ X0 if i is even; and x ∈ X1 if i is odd.

3. For each x ∈ X0 ∪X1 ∪ {w∗} there exists a unique i ∈ [0, 2q] such that

x ∈ Xi \ Xi+2. In addition,

– if x = w∗, then x 6∈ Xi+2 ∪ Xi+3 ∪ . . . ∪ X2q;

– if x ∈ X0, then i is even and x 6∈ Xi+2 ∪ Xi+4 ∪ . . . ∪ X2q; and

– if x ∈ X1, then i is odd and x 6∈ Xi+2 ∪ Xi+4 ∪ . . . ∪ X2q−1.

Proof. Consider the sequence (X0, X2, . . . , X2q, X1). Because X0 ∩ X1 = ∅,
for each x ∈ X0, there exists some even number i ∈ [0, 2q] such that

x ∈ Xi \ Xi+2. By Observation A, Xi \ Xi+2 = {x} and vi+2 ∈ A1.

Since |X0| = k+1
2

, we conclude that there exist k+1
2

even integers i ∈ [0, 2q]

with |Xi \ Xi+2| = 1 and vi+2 ∈ A1. Similarly, by considering the se-

quence (X1, X3, . . . , X2q−1, X0), there exist k+1
2

odd integers i ∈ [0, 2q] with

|Xi \ Xi+2| = 1 and vi+2 ∈ A1. Hence, |A1| ≥ k + 1.
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Let i∗ be the smallest nonnegative integer such that |Xi∗+2 \ Xi∗ | = 1.

Note, by the above discussion, i∗ exists. Let Xi∗+2 \ Xi∗ = {w∗}. It can

be seen that w∗ 6∈ X0 ∪ X1. By the same argument as in the previous

paragraph (using either the even or the odd sequence depending on the parity

of i∗), there exists some i ≥ i∗ such that w∗ ∈ Xi \ Xi+2 and vi+2 ∈ A1.

Moreover, this i is different from the i’s observed in the previous paragraph.

So, |A1| ≥ k + 2.

By a similar discussion applied to Y0 and Y1 one can show that there are

at least k integers i such that |Yi \ Yi+2| = 1.

Combining all the above discussion, to complete the proof (including the

moreover part) it is enough to show |A1| ≤ k+2. Consider a sequence vi, vi+1,

. . . , vi+s, vi+s+1 with vi, vi+s+1 ∈ A1 and vi+1, . . . , vi+s ∈ A2. Then s > 0

holds, and by Observation B, there are at most s−1 integers j in [i, i+s] such

that |Yj \ Yj+2| = 1. Hence, there are at most |A2| − |A1| integers i in [0, 2q]

with |Yi \Yi+2| = 1. This implies, by the previous paragraph, |A2|− |A1| ≥ k.

Recall, |A2|+ |A1| = 2q + 1 ≤ 3k + 4. Therefore, |A1| ≤ k + 2.

Claim 2. For any vi, vj ∈ A1 with i 6= j, we have |i − j| ≥ 3.

Proof. Suppose the claim fails. Without loss of generality, by Observation

A (1), we may assume there exists some i ∈ [0, 2q] such that vi−1, vi+1 ∈ A1

and vi−3, vi−2, vi, vi+2 ∈ A2. By Observation A (2), Xi−2 = Xi = Xi+2.

Assume i is odd. (The proof for i even is symmetric.) By Claim 1 (2), there

exist w1 ∈ Xi−3 \ Xi−1 and w2 ∈ Xi−1 \ Xi+1, where {w1, w2} ⊆ X0 ∪ {w∗}.
From w1 ∈ Xi−3 and w2 ∈ Xi−1, it follows w1, w2 6∈ Xi−2. By Claim 1 (3),

w1, w2 6∈ Xi+1 ∪ Xi+3. Hence,

Xi+2 ∪ Xi+1 = Xi ∪ Xi+1 = (X0 ∪ X1 ∪ {w∗}) \ {w1, w2}.

If vi+3 ∈ A2, by Observation A (3), we have Xi+1 ⊆ Xi+3, implying w1 or w2

is in Xi+3 \ Xi+1, a contradiction. Hence, vi+3 ∈ A1. Again by Claim 1 (2),
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w1 or w2 must be in Xi+3 \ Xi+1, a contradiction.

By Claims 1 and 2, we have 2q + 1 = |A1| + |A2| ≥ 3(k + 2) = 3k + 6,

contradicting q ≤ 3k+3
2

. This completes the proof for q ≤ 3k+3
2

.

Now consider q ≥ 3k+5
2

. Observe that if q′ ≤ q, then µ(C2q+1) admits a ho-

momorphism to µ(C2q′+1), which implies that χk(µ(C2q+1)) ≤ χk(µ(C2q′+1)).

Thus to prove the case q ≥ 3k+5
2

, it suffices to give a k-fold colouring f for

µ(C3k+6) using colours from the set [0, 2k + k−1
2

]. We give such a colouring

f below by using the above proof. For instance, combining Claims 1 and 2,

there are exactly k+2 vertices in A1; and these vertices are evenly distributed

on C3k+6.

Let f(u) = [0, k − 1], where u is the root of µ(C3k+6). Next, we extend

f to a k-fold colouring for C3k+6 using colours from [0, 2k + 1]. For a, b ∈
[0, 3k + 5] with appropriate parities, denote < a, b > as the set of integers

{a, a + 2, a + 4, . . . , b− 2, b} (mod 3k + 6). For 0 ≤ j ≤ 2k + 1, define:

V [j] =







































< 5 + 6j, 2 + 6j >, j = 0, 1, . . . , k−3
2

;
< 8 + 6(j − k−1

2
), 5 + 6(j − k−1

2
) >, j = k−1

2
, . . . , k − 2;

< 2, 3k − 1 > ∪{3k + 2, 3k + 5}, j = k − 1;
< 7 + 6(j − k), 6(j − k) >, j = k, k + 1, . . . , k + k−1

2
;

< 10 + 6(j − k − k+1
2

), 3 + 6(j − k − k+1
2

) >, j = k + k+1
2

, . . . , 2k;
< 4, 3k + 3 >, j = 2k + 1.

Define f on C3k+6 by j ∈ f(vi) whenever i ∈ V [j]. Observe, for each i,

|(f(vi−1) ∪ f(vi+1)) ∩ [k, 2k + 1]| ≤ k+1
2

.

Finally, let f(vi) be any k colours from [k, 2k + k−1
2

] \ (f(vi−1)∪ f(vi+1)).

It is straightforward to verify that f is a k-fold (2k + k+1
2

)-colouring for

µ(C3k+6). We shall leave the details to the reader. This completes the proof

of Theorem 12.
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