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Abstract

A k-fold colouring of a graph is a function that assigns to each
vertex a set of k colours, so that the colour sets assigned to adjacent
vertices are disjoint. The k-th chromatic number of a graph G, de-
noted by xx(G), is the minimum total number of colours used in a
k-fold colouring of G. Let u(G) denote the Mycielskian of G. For any
positive integer k, it holds that xx(G) + 1 < xk(u(G)) < xx(G) + k
[5]. Although both bounds are attainable, it was proved in [7] that if
k > 2 and x;(G) < 3k —2, then the upper bound can be reduced by 1,
ie., xk(u(G@)) < xx(G)+k—1. We conjecture that for any n > 3k —1,
there is a graph G with xx(G) = n and xx(u(G)) = n+ k. This is
equivalent to conjecturing that the equality xx(u(K(n,k))) =n +k
holds for Kneser graphs K (n, k) with n > 3k — 1. We confirm this
conjecture for k = 2,3, or when n is a multiple of k or n > 3k%/Ink.
Moreover, we determine the values of xj(u(Caq41)) for 1 < k < g.
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1 Introduction

In search of graphs with large chromatic number but small clique size, My-
cielski [6]introduced the following construction: Let G be a graph with vertex
set V and edge set E. Let V be a copy of V, V = {T : x € V}, and let u
be a new vertex. The Mycielskian of G, denoted by u(G), is the graph with
vertex set VUV U{u} and edge set E' = EU {27 : 2y € E}U{uz: T € V}.
The vertex u is called the root of u(G); and for any = € V, T is called the
twin of x. For a graph G, denote x(G) and w(G), respectively, the chromatic
number and the clique size of G. It is straightforward to verify that for any
graph G with w(G) > 2, we have w(u(G)) = w(G) and x(u(G)) = x(G) + 1.
Hence, one can obtain triangle free graphs with arbitrarily large chromatic
number, by repeatedly applying the Mycielski construction to K.
Multiple-colouring of graphs was introduced by Stahl [10], and has been
studied extensively in the literature. For any positive integers n and k, we
denote by [n] the set {0,1,...,n—1} and ([Z]) the set of all k-subsets of [n].
A k-fold n-colouring of a graph G is a mapping, f:V — ([Z]), such that for
any edge xy of G, f(x)N f(y) = 0. In other words, a k-fold colouring assigns
to each vertex a set of k colours, where no colour is assigned to any adjacent
vertices. Moreover, if all the colours assigned are from a set of n colours,

then it is a k-fold n-colouring. The k-th chromatic number of G is defined as
Xx(G) = min{n : G admits a k-fold n-colouring}.

The k-fold colouring is an extension of conventional vertex colouring. A
1-fold n-colouring of G is simply a proper n-colouring of G, so x1(G) = x(G).

It is known [8] and easy to see that for any k, k" > 1, xp4u(G) < xx(G) +

X# (G). This implies # < x(G). The fractional chromatic number of G is



defined by
Xel@) 9y

X (G) = inf (X2

Thus x;(G) < x(G) (cf. [8]).

For a graph G, it is natural to ask the following two questions:

1. What is the relation between the fractional chromatic number of G and

the fractional chromatic number of the Mycielskian of G?

2. What is the relation between the k-th chromatic number of G and the
k-th chromatic number of the Mycielskian of G?

The first question was answered by Larsen, Propp and Ullman [4]. It turned
out that the fractional chromatic number of ;(G) is determined by the frac-
tional chromatic number of G: For any graph G,
) = 6) + s

The second question is largely open. Contrary to the answer of the first
question in the above equality, the k-th chromatic number of p(G) is not
determined by xx(G). There are graphs G and G’ with xx(G) = xx(G’) but
Xe((@)) # xe(pu(G')). So it is impossible to express xx(u(G)) in terms of
Xk(G). Hence, we aim at establishing sharp bounds for xx(x(G)) in terms of
Xx(G). Obviously, for any graph G and any positive integer k, xx(u(G)) <

(@)

Xk(G) + k. Combining this with a lower bound established in [5] we have:
Xe(G) +1 < xa(p(G)) < xa(G) + k. (1)

Moreover, it is proved in [5] that for any k£ both the upper and the lower
bounds in (1) can be attained. On the other hand, it is proved in [7] that
if xx(G) is relatively small compared to k, then the upper bound can be

reduced.



Theorem 1 [7] Ifk > 2 and xx(G) =n < 3k—2, then x,(u(G)) < n+k—1.

In this article, we prove that for graphs G with x(G) relatively large com-
pared to k, then the upper bound in (1) cannot be improved. We conjecture

that the condition n < 3k — 2 in Theorem 1 is sharp.

Conjecture 1 If n > 3k — 1, then there is a graph G with xx(G) = n and
Xk((G)) =n+ k.

A homomorphism from a graph G to a graph G’ is a mapping f : V(G) —
V(G') such that f(z)f(y) € E(G'") whenever zy € E(G). If f is a homomor-
phism from G to G’ and ¢ is a k-fold n-colouring for G’, then the mapping
defined as ¢(z) = ¢(f(x)) is a k-fold n-colouring of G. Thus xx(G) < xk(G").

For positive integers n > 2k, the Kneser graph K(n,k) has vertex set
([Z]) in which z ~ y if z Ny = 0. It follows from the definition that a graph
G has a k-fold n-colouring if and only if there is a homomorphism from G
to K(n, k). In particular, if &' = gk for some integer ¢, then it is easy to
show that xp (K (n,k)) = gn. If k¥’ is not a multiple of k, then determining
Xr (K (n,k)) is usually a difficult problem. The well-known Kneser-Lovész
Theorem [3] gives the answer to the case for &' = 1: x(K(n,k)) = n—2k+2.
For k' > 2, the values of (K (n,k)) are still widely open.

Notice that, a homomorphism from G to G’ induces a homomorphism

from pu(G) to u(G’). Hence, we have

max{xx(u(G)) : xk(G) = n} = xx(u(K(n, k))).
Therefore, Conjecture 1 is equivalent to
Conjecture 2 Ifn > 3k — 1, then xp(u(K(n,k))) =n + k.
In this paper, we confirm Conjecture 2 for the following cases:
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e 1 is a multiple of k& (Section 2),
e n > 3k?/Ink (Section 2),
e k <3 (Section 3).

It was proved in [5] that the lower bound in (1) is sharp for complete
graphs K,, with & < n. That is, if £ < n, then x(u(K,)) = xx(K,) +1 =
kn + 1. In Section 4, we generalize this result to circular complete graphs
K, 4 (Corollary 10). Also included in Section 4 are complete solutions of the

k-th chromatic number for the Mycielskian of odd cycles Cyyy1 with k& < g.

2 Kneser graphs with large order

In this section, we prove for any k, if n = gk for some integer ¢ > 3 or
n > 3k*/Ink, then xx(u(K(n,k))) =n+ k.

In the following, the vertex set of K(n, k) is denoted by V. The Myciel-
skian p(K (n, k)) has the vertex set V UV U {u}. For two integers a < b, let
la, b] denote the set of integers ¢ with a < i <b.

Lemma 2 For any positive integer k, x,(u(K(3k, k))) = 4k.

Proof. Suppose to the contrary, x.(u(K(3k,k))) < 4k—1. Let ¢ be a k-fold
colouring of (K (3k, k)) using colours from the set [0, 4k —2]. Without loss of
generality, assume c(u) = [0, k—1]. Let X = {x € V : ¢(z)Nec(u) = 0}. Then
X is an independent set in K (3k, k); for if v,w € X and v ~ w, then v,w
have a common neighbor, say T, in V, implying that c¢(v), c(w), ¢(T) and c(u)
are pairwise disjoint. So |c(u)|+ |c¢(T)| +|c(v)|+ |c(w)| = 4k, a contradiction.
Hence, the vertices of V' can be partitioned into £ + 1 independent sets: X
and A; ={v eV :i=min ¢(v)},i=0,1,...,k— 1, contradicting the fact
that x (K (3k,k)) = k + 2. i



Lemma 3 For anyn > 3k — 1,

Xk(p(K (0, k))) = xa(p(K (n — k. k))) + k.

Proof. Suppose xi(u(K(n,k))) = m. Let ¢ be a k-fold colouring for
w(K(n,k)) using colours from [0,m — 1]. Assume c(u) = [0,k — 1]. Since
X(K(n,k)) = n — 2k + 2 > k, there exists some vertex v in V' with ¢(v) N
[0,k — 1] = 0. Without loss of generality, assume c(v) = [k,2k — 1]. Let
N be the set of neighbors of v in V, and let N = {w € V : w € N}.
Then the subgraph of u(K(n,k)) induced by N U N U {u} is isomorphic to
w(K(n—k,k)). Denote this subgraph by G’. The colouring ¢ restricted to G’
is a k-fold colouring using colours from [0, m — 1] \ [k, 2k — 1], which implies
Xk(G) = xk(p(K(n =k, k) <m — k. i

Corollary 4 For any integers ¢ > 3 and k > 1, xx(u(K(qk, k))) = (¢+ 1)k.

Next we prove that xx(u(K(n, k))) = n+k holds for n > 3k%/Ink. It was
proved by Hilton and Milner [2] that if X is an independent set of K(n, k)
and Nyexx =0, then [X] < 1+ (}21) — (".%7").

For any positive integer k, let ¢(k) be the minimum n such that

n((n—k—1)n—-k—2)...(n—2k+1)— (k—1)!)
kn—1)(n—2)...(n—k+1)

> 1. (2)
Theorem 5 Let n and k be integers with n > ¢(k). Then
Xk(p(K(n—1,k))) < xe(u(K(n, k) — 1.

Proof. Let t = xx(u(K(n,k))) and let ¢ be a k-fold t-colouring of (K (n, k))
using colours from [0,¢ — 1]. Assume c(u) = [0,k — 1]. For i € [0,t — 1], let
S;={x €V :i€c(x)}. Then j;l) |Si| = k:(Z), since each vertex appears in
exactly k of the S;’s.



Since t < n + k, by a straightforward calculation, inequality (2) implies

R e

Therefore, at least k 4 1 of the 9;’s satisty the following:

n—1 n—k—1
|S;| > 1+ (k:—l) —( P )

Hence there exists i* ¢ [0, k—1] with |S;+| > 1+ (Zj) - (";ﬁ;l) This implies
MNges.® # 0. Note that the intersection Nyegs,.x contains only one integer.
For otherwise, assume a € W = Nyeg,.x and W\ {a} # 0. Let 2’ be a vertex
containing a, and y’ be a vertex such that y’ "W =W\ {a} and y' N’ # (.
Then S" = S;« U{2’,y'} is an independent set with || > 1+ (Zj) — (";ﬁ;l)
and Nyegx = 0, a contradiction.

Assume Ngeg.x = {a}. If y € K(n,k) and y intersects every z € Sj«,
then a € y. For otherwise, S” = S;» U{y} is an independent set with S; C S’
and Nzegrx = B, a contradiction. We conclude that for any y € K(n, k), if
a ¢ y, then none of S;x U{y} and S;-U{7} is an independent set in u(K (n, k)),
which implies that i* € ¢(y) and i* € ¢(7).

By letting a = n, the restriction of ¢ to the subgraph pu(K(n—1,k%)) gives
a k-fold (t — 1)-colouring of u(K(n —1,k)). i

Corollary 6 For any n > max{2k + 1, N}, xx(u(K(n,k))) = n + k, where
N is defined as follows. If p(k) = gk + 1, then N = qk; otherwise, N is the
smallest integer such that N is a multiple of k and N > ¢(k).

Proof. By Corollary 4, xx(u(K(N,k))) = N + k. By Theorem 5,

Xk(p(K (n, k) = (n = N) + xp(u(K(N, k))) = n + k.



|
Although it might be hard to find a simple formula for the function ¢(k)
defined in the above, one can easily learn that ¢(k) has order k%/In k.

Corollary 7 Ifk > 4 and n > 3k*/Ink, then xx(u(K(n, k))) = n + k.

Proof. Assume n > 3k?/Ink. Then

nn—k—1)n—k—-2)...(n—2k+1)— (k—1)!]
kn—1)(n—2)...(n—k+1)
m—1)n—-k—-—1)n—-k—-2)...(n—2k+1)
kn—1)(n—2)...(n—k+1)

n—1(n-2k\""

" (n—k)

n= L k1) n2k)

k
%6—k(k—1) In k/2k?

Ink
2k

_— >
Vilnk

Therefore, n > N for the N defined in Corollary 6, so the result follows. [
In Corollary 7, 3k*/Ink can be replaced by (1 + €)k?*/Ink for any € > 0,

>

> 1.

provided that k is large enough.

3 K(n,2) and K(n,3)

In this section, we confirm Conjecture 2 for £ < 3. The case k = 1 was proved
by Mycielski. For k = 2,3, the value of ¢(k) defined in (2) in Section 2 can
be easily determined: ¢(2) = 6 and ¢(3) = 10. Thus to prove Conjecture 2
for k = 2,3, by Corollary 6 it suffices to show that yo(u(K(5,2))) = 7 and
x3(K(8,3)) = 11. As it was proved in [5] that xa2(u(K(5,2))) = 7, the case
k = 2 is settled.



In the following, we confirm the case k = 3.
Theorem 8 y3(u(K(8,3))) = 11.

Proof. As yx(K(8,3)) < 11, it suffices to show xx(K(8,3)) > 10. Assume to
the contrary, there exists a 3-fold 10-colouring ¢ of (K (8,3)), using colours
from the set {ag,ay,...,aq}. For simplicity, we denote each vertex in V' by
(ijk), where 4,5,k € {0,1,2,...,7}, and its twin by (ijk); and for s < ¢, we
denote the set of colours {as, asi1,...,a:} by als,t].

Assume c(u) = a[0,2]. Let X = {x € V : ¢(x) Nec(u) = 0}. For x € X
and ¢ € z, let M;(x) ={v eV :v\xz={i}}. For aset A of vertices, let
c(A) = Ugeac(z).

Claim 1 For any x € X, there is at most one integer i &€ x for which

o(Mi(z)) £ c(x) U c(u).

Proof. Assume the claim is not true. Without loss of generality, assume
that x = (012), c¢(z) = a3, 5] and ¢(M;5(z)), c(M7(x)) € c(x)Uc(u) = a0, 5].
We may assume ag € c¢(Ms(x)) and a; € ¢(M7(x)) for some t € [6,9]. For
any 4, j, k € [4,7], (ijk) ~ x,u, M3(z). Hence c(ijk) = a[7,9]. Similarly, for
any i, 7,k € [3,6], c(ijk) = a[6,9] — {a;}. As c(456) = a[7,9] = a[6,9] — {a:},
we conclude that ¢t = 6.

Let W := {(034), (157), (026), (134), (257)}. Every vertex in W is adja-
cent to some (ijk), with i, j, k € [4,7]) or 4, j, k € [3,6]. Hence, c(W) C al0, 6].
This is impossible, as W induces a C5 while it is known [10] that x3(C5) = 8.

i

Claim 2 Let x,y € X. If x # y, then ¢(x) # c(y). Moreover, if xt Ny # 0,
then |c(z) Ne(y)| = 2.



Proof. Let z,y € X, © # y. Assume to the contrary, ¢(x) = ¢(y). Then
xNy # 0. Assume |z Ny| = 2, say x = (012),y = (013) € X and c(y) =
c(x) = a[3,5]. Then ¢(245),¢(367) C al6,9], implying |c(245) N al0,2]] > 2
and |¢(367) N al0,2]| > 2. This is impossible as (367) ~ (245).

Next, assume |z Ny| = 1, say x = (012),y = (234) and ¢(z) = c(y) =
a[3,5]. By Claim 1, there exists ¢ € {5,6,7}, say i = 5, ¢(M;(z)) C
c(x) Uc(u) = al0,5]. Hence ¢(015) = al0,2] (as (015) ~ (234)). Then
¢(346), ¢(015) C a[6,9], a contradiction, as 345 ~ 015. Hence, ¢(z) # c(y).

To prove the moreover part, assume x Ny # (). Then there is some z € V
with z ~ z,y. Thus c(z) U c¢(y) U c(u) is disjoint from ¢(Z). This implies
e(&) N ey)| =2 '

In the remainder of the proof, we use Schrijver graphs. For n > k, the
Schrigver graph, denoted by S(n, k), is a subgraph of K(n, k) induced by the
vertices that do not contain any pair of consecutive integers in the cyclic
order of [n]. Schrijver [9] proved that x(K(n,k)) = x(S(n, k)) and S(n, k) is
vertex critical.

Denote the subgraph of K(8,3) induced by V' — X by K(8,3)\ X. Then
K(8,3)\ X has a 3-vertex-colouring f, defined by f(v) = min{c(v)}. Hence,
S(8,3) can not be a subgraph of K(8,3) \ X. In what follows, we frequently
use the fact that if, for some ordering of {0,1,...,7}, each vertex z € X
contains a pair of cyclically consecutive integersin {0, 1, ..., 7}, then K (8, 3)\

X contains S(8,3) as a subgraph, which is a contradiction.
Claim 3 For any x,y € X, v Ny # 0.

Proof. Assume to the contrary, z = (012),y = (567) € X. Suppose there is
avertex z € X \{z, y} which intersects both z,y. By Claim 2, |¢(z)Nc(z)| = 2
and |¢(2) Ne(y)| = 2, which is a contradiction, as ¢(x) N¢(y) = @. Therefore,
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any z € X \ {z,y} is either disjoint from z or disjoint from y. We partition
X into two sets, A, and A,, that include vertices disjoint from z or from y,
respectively.

Next we claim A, = {y} or A, = {z}. For each z € A,, applying the
above discussion on x and y to z and y, one can show that for any 2’ € A,,
2Nz = 0. Hence, if A, — {z} # 0 and A, — {y} # 0, then we may assume
2z C[0,3]forall z € Ay, and 2’ C [4,7] for all 2’ € A,. This implies that every
vertex of X contains two consecutive integers. Thus, A, = {y} or A, = {z}.

Assume A, = {y}. If (024) € X, then clearly every vertex of X contains
two consecutive integers. Suppose z3 = (024) € X. If (023) ¢ X, then
by exchanging 3 and 4 in the cyclic ordering, every vertex in X contains
two consecutive integers. Assume z; = (023) € X. By Claim 1, for some
i € {1,2}, c(z;)) € e(xr) Uec(u), and hence c(z) = c(z;) (since z; € X)),
contradicting Claim 2. i

It follows from Claims 2 and 3 that for any distinct z,y € X, |c(z) N
c(y)| = 2. There are at most five 3-subsets of a[3, 9] that pairwisely have two
elements in common. Thus | X| < 5. By Claim 3, it is straightforward to
verify that there exists an ordering of {0,1,2,...,7} such that each z € X
contains a pair of cyclic consecutive integers. The details are omitted, as

they are a bit tedious yet apparent. i

4 Circular cliques and odd cycles

For any positive integers p > 2q, the circular complete graph (or circular
clique) K,/, has vertex set [p| in which ij is an edge if and only if ¢ <
|i — j| < p—q. Circular cliques play an essential role in the study of circular
chromatic number of graphs (cf. [12, 13]). A homomorphism from G to K, /,

is also called a (p, q)-colouring of G. The circular chromatic number of G is
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defined as
Xo(G) = inf{p/q : G has a (p, q)-colouring}.

It is known [12] that for any graph G, x7(G) < x.(G). Moreover, a result in
[1] implies that if x ;(G) = x.(G) then for any positive integer k,

Xk(G) = [kxs(G)].
As Xe(Kp/q) = xr(Kp/q) = p/q, we have

Xk(Kp/q) = [kp/q].

Let m = [kp/q]. Indeed, a k-fold m-colouring ¢ of K, /,, using colours
ag, a1, ..., 0an_1, can be easily constructed as follows. For 7 =0,1,...,m—1,
assign colour a; to vertices jq, jg+1, ..., (j+1)g—1. Here the calculations are
modulo p. Observe that c is a k-fold colouring for K,/,, because each colour
a; is assigned to an independent set of K/, and the union U;”:_Ol{jq,jq +
1,...,(j+ 1)g — 1} = [0,mq — 1] is an interval of mgq consecutive integers.
As mq > kp, for each integer i, there are at least k integers ¢t € [0, mqg — 1]
that are congruent to ¢ modulo p, i.e., there are at least k colours assigned
to each vertex i of K,/,. (Here, for convenience, we modify the definition of
a k-fold colouring to be a colouring which assigns to each vertex a set of at
least k colours.)

Now we extend the above k-fold colouring ¢ of K/, to a k-fold colouring
for y1(K,,) by assigning at least k colours to each vertex in V U {u}. Let
S =a[m—k,m — 1] and let c¢(u) = S. For i € V(K,,), let g(i) = c(i) \ S.
Then |g(i)] is equal to the number of integers in the interval [0, (m — k)q — 1]
that are congruent to ¢ modulo p. Hence |g(z)| > |(m — k)q/p|. Let b =
k— [(m —k)q/p], and let c(i) = g(i) U {am, ams1,- - -, amsp—1}- Then cis a
k-fold (m + b)-colouring of ((K,/q), implying x(u(Kp/e)) < m + b.

12



Theorem 9 Suppose p,q, k are positive integers with p > 2q. Then

[kp/q + ka/p] < xe(u(Kypsq)) < [kp/q] + [kq/p].

Proof. The lower bound follows from the result that x ¢ (u(/,/q)) = X 5(Kp/q)+

1
Xt (Kp/q)

graph that x;(p(K,/e)) < m+b, where m = [kq/p| and b = k—|(m—k)q/p].

= g + %. For the upper bound, we have shown in the previous para-

By letting m = (kp + s)/q, easy calculation shows that b = [(kq — s)/p] <

[kq/pl. |
It was proved in [5] that xx(u(K,)) = xk(Kn) +1 = kn + 1 holds for

k < n. By Theorem 9, this result can be generalized to circular cliques.
Corollary 10 If k < p/q, then xi(1(Kp/q)) = xi(Kpq) + 1.

Proof. As xi(u(G)) > xx(G) + 1 holds for any graph G, it suffices to note
that when k < p/q, Theorem 9 implies that x4 (1(K,/q)) < Xe(Kpy) +1. B

Corollary 11 If k = tq is a multiple of q, then xx(u(K,/q)) = to+ [kq/p];
if k = sp is a multiple of p, then xi((K,/q)) = sq + [kp/q].

Corollary 11 implies that for any integer s with 1 < s < [k/2], there is a
graph G with xx(u(G)) = x&(G) + s.
If p = 2¢+ 1, then K/, is the odd cycle Cyg11. Assume k < ¢q. By

Theorem 9,
2k + [(k +1)/2] < xa(p(Coq+1)) < 2k + [(k +2)/2].

In particular, if & is even, then xx(u(Coy41)) = 5k/2 + 1; if k is odd, then
Xk ((Cag41)) € {2k+5L, 2k+E£2}. Tt was proved in [5] that yk(p(Cagi1)) =
2k + kzi?’ if kisodd and k < ¢ < ‘%T_l In the next theorem, we completely

determine the value of xx((Caqs1)) for 3 <k <gq.
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Theorem 12 Let k be an odd integer, k > 3. Then

N R i A
Proof. Denote V(Cayt1) = {vo,v1,..., v}, where v; ~ v;41. Throughout
the proof, all the subindices are taken modulo 2¢g + 1.

We first consider the case £ < ¢ < ‘%TJ’?’ Assume to the contrary,
Xi((Cag41)) = 2k + 5L Let ¢ be a k-fold colouring of u(Chqy1) us-
ing colours from the set a[0,2k + £51]. Without loss of generality, assume
c(u) = al0, k — 1J.

Denote by X the colour set a[k, 2k + % ] Fori=0,1,...,2q, let W, =
c(v), X; = W;NnX, and Y; = W; N a[O,k: —1]. Then W; = Y; U X; and
| X;|+Y;| = k. For each i, since ¢(7;) € X and (c(v;—1) Uc(vit1)) Ne(w;) = 0,
we have | X;_1 U X; | < |X|—k=(k+1)/2. As |W; U W, 41| = 2k, we have
|X; U X;11| > k. Hence, for each 1, kz;l <X < k%l

Partition V' = {vg, v1,...,v9,} into the following two sets:

A = {’UZ'EV: |XZ|—
Ay = {’UZ'EV: |XZ|—

)
B
Observation A. All the following hold for every i € [0, 2¢]:

1. If v; € Al, then Vi—1, Vi+1 € As.

2. If Vs, Vit € Ag, then X, = XZ'+2; if Vs, Viga € Al, then |AXVZ \ Xi+2| <1
and |Xz+2\Xz| S 1.

3. Assume v; € A for some i. If v, 49 € Ay (or v;_o € Ag, respectively),

then X; C X;,o (or X; C X, o, respectively).

For each 4, as |X;| + |Yi| = k, one has %%

—L < Y| < EL Similar to the

above discussion on X;’s, we have:

Observation B. The following hold for all i € [0, 2q]:
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1. If Vi, Vig2 € Al, then Y; = }/;4_2.

2. Assume v; € A; for some i. If v, 49 € Ay (or v;_o € Ag, respectively),

then Y, o CY; (or Y;_o C Y}, respectively).

3. Assume v;,v;40 € As for some i. If v;;; € Ay, then Y; = Y, o; if

Vip1 € Az, then |V \ Y| <1 and |V \ Yip| <1

By Observation A (1), there exists some i such that v;, v;41 € Ay, Without

loss of generality, assume vy, v; € As.

Claim 1. |A;| = k + 2. Moreover, all the following hold:
1 UM, Xi=XoUX; U{w*} for some w* ¢ XoU X;.

2. For each v; € Ay, i € [0,2q], there exists some z € X; o\ X;. In
addition, if z # w*, then x € Xj if i is even; and = € X; if 7 is odd.

3. For each x € Xy U X; U{w*} there exists a unique i € [0, 2¢] such that
x € Xz \ XZ'+2. In addition,

- if:E:w*,then:EQXHgUXHgU...Ung;
— if z € Xj, then i is even and x & X, 1o U X;44 U ... U Xy,; and

—ifz e Xy, theniisodd and x & X;10 U X140 U .. U Xoy .

Proof. Consider the sequence (Xo, Xo,. .., Xa,, X1). Because Xy N X; = 0,
for each x € X, there exists some even number ¢ € [0,2¢] such that
x € X; \ Xit2. By Observation A, X; \ X;4o = {z} and v;52 € Aj.
Since |Xo| = %!, we conclude that there exist 3 even integers i € [0, 2q]
with |X; \ Xj12| = 1 and v,y € A;. Similarly, by considering the se-
quence (X1, X3, ..., X951, Xo), there exist kzil odd integers i € [0,2q] with

|X; \ Xit2| =1 and v;12 € Ay. Hence, |A;| > k + 1.
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= 1.

Let i* be the smallest nonnegative integer such that |X;« o \ X
Note, by the above discussion, i* exists. Let X9 \ X3+ = {w*}. It can
be seen that w* ¢ X, U X;. By the same argument as in the previous
paragraph (using either the even or the odd sequence depending on the parity
of i*), there exists some ¢ > ¢* such that w* € X; \ X;12 and v;12 € Aj.
Moreover, this ¢ is different from the i’s observed in the previous paragraph.
So, |Ay| >k +2.

By a similar discussion applied to Y and Y; one can show that there are
at least k integers ¢ such that |Y; \ Yiio| = 1.

Combining all the above discussion, to complete the proof (including the

moreover part) it is enough to show |A;| < k+2. Consider a sequence v;, v;11,
oy Vins, Vitsye1 With v, 00601 € Ay and v;4q, ..., 0,05 € As. Then s > 0
holds, and by Observation B, there are at most s—1 integers j in [¢, i+ ] such
that |Y; \ Yj12| = 1. Hence, there are at most |As| — |A;| integers ¢ in [0, 2¢]
with |Y;\ Y;4o| = 1. This implies, by the previous paragraph, |As| —|A;| > k.
Recall, |A2| + |A1] = 2¢ + 1 < 3k + 4. Therefore, |A;] < k + 2. |
Claim 2. For any v;,v; € Ay with i # j, we have |i — j| > 3.
Proof. Suppose the claim fails. Without loss of generality, by Observation
A (1), we may assume there exists some i € [0, 2¢] such that v;_1,v,41 € A3
and v;_3, vVj_9,V;,Vipa € Ay. By Observation A (2), X;—2 = X; = Xjo.
Assume ¢ is odd. (The proof for i even is symmetric.) By Claim 1 (2), there
exist w; € X;_3 \ X;—1 and we € X;_1 \ X411, where {wy,wy} C Xy U {w*}.
From wy € X;_3 and we € X;_1, it follows wy,wy € X;_5. By Claim 1 (3),
wy, wy & X1 U X;43. Hence,

XZ'+2 U Xi—l—l = Xz U Xi—l—l = (X(] U X1 U {’LU*}) \ {'LUl,’LUg}.

If v;43 € Ag, by Observation A (3), we have X, 1 C X, 3, implying w; or ws
is in X3 \ Xi+1, a contradiction. Hence, v;13 € A;. Again by Claim 1 (2),
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wy or we must be in X, 3\ X;41, a contradiction. [ |

By Claims 1 and 2, we have 2¢ + 1 = |Ay| + |A2| > 3(k + 2) = 3k + 6,
contradicting ¢ < %TJ’?’ This completes the proof for ¢ < %TJ’?’

Now consider ¢ > 2552 Observe that if ¢’ < ¢, then u(Chg41) admits a ho-
momorphism to p(Cay41), which implies that xi(1(Cagi1)) < Xk(p(Coqr41))-
Thus to prove the case ¢ > ‘%TJ’E’, it suffices to give a k-fold colouring f for
11(Cs146) using colours from the set [0, 2k + £51]. We give such a colouring
f below by using the above proof. For instance, combining Claims 1 and 2,
there are exactly k42 vertices in A;; and these vertices are evenly distributed
on Cspyé.

Let f(u) = [0,k — 1], where u is the root of p(Csri6). Next, we extend
f to a k-fold colouring for Csy6 using colours from [0, 2k + 1]. For a,b €
0,3k + 5] with appropriate parities, denote < a,b > as the set of integers

{a,a+2,a+4,...,b—2,b} (mod 3k + 6). For 0 < j <2k + 1, define:

<5+65,2+6j >, j=0,1,..., 5%
<846(j — 51),5+6(j — 551) >, j=5 k-2
Vi = < 2,3k —1>U{3k+ 2,3k +5}, j=k—1,
=Y <746 —k),6(— k) >, j=kk+1,.. . k+
<10+6(j —k—51),3+46(j —k— 1) >, j=k+5EL .. 2k
< 4,3k + 3 >, j=2k+1.

Define f on Csgi6 by j € f(v;) whenever i € V[j]. Observe, for each i,
(F(0i1) U Floisn)) 0 [k, 26+ 1]] < B2,

Finally, let f(7;) be any k colours from [k, 2k + E2]\ (f(vi—1) U f(vi41))-
It is straightforward to verify that f is a k-fold (2k + kizl)-colouring for
1(Csk46). We shall leave the details to the reader. This completes the proof
of Theorem 12. [ |
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