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Instructions:

e Do exactly two problems from Part A AND two problems from Part B. If
you attempt more than two problems in either Part A or Part B, and do not clearly
indicate which two are to count, only the first two problems will be counted towards
your grade.

e No notes, books, calculators, or cell phones may be used during this exam.

PART A: Do only TWO problems

1 2 -2
1. (a) Let A= 2 8 0
-2 0 24

i. [6 points] Find the LU factorization of A, where L is a unit lower triangular
and U is an upper triangular matrix.

ii. [5 points] Find the LD L factorization of A, where L is a unit lower triangular
and D is a diagonal matrix.

iii. [6 points] Find the RT R factorization of A, where R is an upper triangular
matrix with positive diagonal entries. What is this factorization called?

(b) [8 points] Show that an arbitrary n X n symmetric matrix S is positive definite if
and only if it can be factored into RT R, where R is an upper triangular matrix
with positive diagonal entries.
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Note that B is symmetric and nonsingular (det(B)=—1).
i. In one sentence each, give a reason for your answer to the following questions:
[3 points each]
(i.1.) Is B diagonalizable?
(i.2.) Is B positive definite?
(i.3.) Is B an orthogonal matrix?

ii. [10 points] By finding the spectral radius of its iteration matrix, determine
whether or not Gauss-Seidel iteration converges for the linear system Bx = b,
where B is given above and b is an arbitrary vector.

(b) [6 points] Show that if an arbitrary 3 x 3 matrix C' with positive entries is strictly
diagonally dominant, then Jacobi iteration converges for the linear system Cx =
d, for all vectors d. (Hint: Use Gershgorin’s circle theorem on the Jacobi iteration
matrix.)

(a) [5 points] Let @ be an orthogonal matrix. Fill in each of the following blanks:

iii. Condition number x(Q) =......

v Qe = .-

v. If ¢; and cy are columns of Q, then the inner product cfco = ... ...
(b) Let

i. [7 points] Find the QR decomposition of A; that is, find an orthogonal matrix
@ and an upper triangular matrix R such that A = QR.

ii. [4 points] Obtain the first iterate of the QR method for finding the eigenvalues
of A.

iii. [6 points] Perform two iterations of the Power Method to the matrix A with
initial vector x(*) = (1,0,0)" to obtain x(?.

(c) [3 points] Give one advantage and one disadvantage of Power Method over QR
method when applied to solve the eigenvalue problem.



PART B: Do only TWO problems

1. Consider the elliptic boundary value problem (BVP):

Upz +Uyy =6 for 0 < <3,0<y<3
U(x,0) =3z% U(x,3) =6z +32% for 0 <z <3
U0,y) =0, U3,y) =6y +27 for 0 <y <3

(a) [4 points] An exact solution of this BVP has the form U(z,y) = Axy+ Bz?, where
A and B are constants. Find A and B.

(b) [3 points] Is there more than one correct answer to Part (a)? Briefly explain why
or why not.

(c) [10 points| Use the usual 5-point approximation to U, + Uy, to get a scheme that
approximates the given partial differential equation. Then, find the system of 4
linear equations in the 4 unknowns w; = u(1,1),uy = w(2,1),u3 = u(1,2),us =
u(2, 2) that results from applying this scheme to the given BVP on the grid shown
below. (Note that h = 1).

(d) [3 points|] Explain why the solution to the system of equations in Part (c) is
unique.

(e) [5 points] Now suppose that for z = 0 (0 < y < 3), we replace the given boundary
values (U(0,y) = 0) with the boundary condition U,(0,y) = 0. Approximating U,
by central differences, express the approximate solution «(0, 1) in terms of u(0, 2)
and u(1,1).
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2. Consider the following difference approximation to the parabolic partial differential
equation (PDE) U; = cU,, (0 <x < 1,t>0), where ¢ > 0 is a constant.

—CTrUi—1,5+1 + (1 + QCT)ui,jH — CTUi41 541 = Ui j- (1)
Here, u; j = u(iAz, jAt) = u(ih, jk) and r = k/h?.

(a) [2 points] Is this difference scheme exzplicit or implicit?

(b) [5 points] Suppose that for z = 0 and x = 1, U(z,t) = 0 for all £ > 0. Letting
Vi = [ung vz, unagl' (2)
find matrices B and C' (of order N — 1) so that the scheme takes the form
Bvji = Cvj. (3)

(c) [10 points] Use EITHER the von Neumann (Fourier) method OR the matrix
(eigenvalue) method to determine the values of » = k/h? for which this scheme is
stable.

(d) [3 points] The truncation error for this scheme is T'(h, k) = O(k)+O(h?). Explain
why this fact implies that the scheme is consistent with the given PDE.

(e) [5 points] Define the notion of convergence of a difference approximation for a
PDE and, with the help of previous parts of this problem, explain why the given
scheme (together with appropriate initial and boundary conditions) converges for
the values of r found in part (c).

3. Consider the PDE
Upz + Uy — 2$2Uyy =0

with initial data given on y = 0.

(a) [4 points] Determine all values of x for which the given PDE is hyperbolic.

(b) [5 points] Determine the two characteristic directions (slopes), dy/dx, for the
given PDE at a general point (z,y).

(c) [6 points] Using the result of part (b), find the exact values of the coordinates of
the point of intersection, R, of the characteristic curves through the points P(1,0)

YA

and Q(2,0). P Q 2
(d) [2 points] Give the interval of dependence for U(x,y) at the point R of part (c).
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(e) [4 points] Derive a consistent finite difference approximation for the zU,, term.
(You need not show that your approximation is consistent.)

(f) [4 points| Suppose we approximate the given PDE by a consistent explicit differ-
ence scheme with h = k = 1. Referring to the CFL condition, explain why or
why not this scheme converges at the point R of part (c).



