Hamiltonicity and Circular Distance Two Labellings *

Daphne Der-Fen Liu
Department of Mathematics and Computer Science
California State University, Los Angeles
Los Angeles, CA 90032

Email: dliu@calstatela.edu

August 31, 1998 (Revised July 15, 1999; Feb. 29, 2000)

Abstract

A k-circular distance two labelling (or k-c-labelling) of a graph G is a vertexlabelling such that the circular difference (mod k) of the labels is at least two for adjacent vertices, and at least one for vertices at distance two. Given G, denote $\sigma(G)$ the minimum k for which there exists a k-c-labelling of G. Suppose Ghas n vertices, we prove $\sigma(G) \leq n$ if G^c is Hamiltonian; and $\sigma(G) = n + p_v(G^c)$ otherwise, where $p_v(G)$ is the path covering number of G. We give exact values of $\sigma(G)$ for some families of graphs such that G^c is Hamiltonian, and discuss injective k-c-labellings especially for joins and unions of graphs.

Keywords. Hamiltonicity, vertex-labelling, L(2,1)-labelling, path covering number.

1 Introduction

Motivated from the channel assignment problem introduced by Hale [5], the distance two labelling was first introduced and studied by Griggs and Yeh [4]. Given a graph G, for any $u, v \in V(G)$, let $d_G(u, v)$ denote the distance between u and v in G. An L(2,1)-labelling is a function $f:V(G) \to \{0,1,2,\cdots\}$ such that if $uv \in E(G)$ then $|f(u)-f(v)| \geq 2$; and if $d_G(u,v)=2$, then $|f(u)-f(v)| \geq 1$. The span of an L(2,1)-labelling f is defined as $\max_{u,v \in V(G)} |f(u)-f(v)|$. The λ -number, $\lambda(G)$, is the minimum span among all L(2,1)-labellings of G.

^{*}Research partially supported by the National Science Foundation under grant DMS-9805945.

We consider a variation of the L(2,1)-labelling by using a different measurement. For a positive integer k, a k-circular-labelling (or k-c-labelling for short) of a graph G is a function, $f:V(G)\to\{0,1,2,\cdots,k-1\}$, such that:

$$|f(u) - f(v)|_k \ge \begin{cases} 2, & \text{if } d_G(u, v) = 1; \\ 1, & \text{if } d_G(u, v) = 2. \end{cases}$$

where $|x|_k := \min\{|x|, k - |x|\}$ is the *circular difference* modulo k. The σ -number, $\sigma(G)$, is the minimum k of a k-c-labelling of G. A generalization of this labelling, namely, circular distance d labelling (with restrictions on vertices of distance $\leq d$), was introduced and studied by ven den Heuvel, Leese and Shepherd [6].

In this Note, only finite simple graphs are considered. To find the minimum span, we consider without loss of generality only the labellings in which 0 is used. Given a graph G, the path covering number, $p_v(G)$, is the smallest number of vertex-disjoint paths covering V(G). Georges, Mauro and Whittlesey [3] proved the following result:

Theorem 1.1 [3] Given a graph G on n vertices, then

$$\lambda(G) \begin{cases} \leq n - 1, & if \ p_v(G^c) = 1; \\ = n + p_v(G^c) - 2, & if \ p_v(G^c) \geq 2. \end{cases}$$

It is known [6] and not hard to observe the following inequalities:

$$\lambda(G) + 1 \le \sigma(G) \le \lambda(G) + 2$$
, for any graph G . (*)

In this Note, we use Theorem 1.1 and (*) to prove:

Theorem 1.2 Given a graph G on n vertices, then

$$\sigma(G) \left\{ \begin{array}{ll} \leq n, & \text{if } G^c \text{ is Hamiltonian;} \\ = n + p_v(G^c), & \text{if } G^c \text{ is not Hamiltonian.} \end{array} \right.$$

In Section 3, we give sufficient conditions for each of the two inequalities in (*), and determine the σ -numbers for cycles and trees. In Section 4, we study injective circular distance two labellings, especially for unions and joins of graphs.

2 Proof of Theorem 1.2

If L is a k-c-labelling of a graph G, define the following for $0 \le i \le k-1$:

$$L_i := \{v : L(v) = i\} \text{ and } l_i := |L_i|;$$

$$H(L) := \{i : L_i = \emptyset\};$$

$$G(L) := \{i : L_i = \emptyset \text{ and } l_{i-1} = l_{i+1} = 1\};$$

$$M(L) := \{i : l_i \ge 2\}.$$

All the indices above are taken (mod k). If $i \in H(L)$, G(L) or M(L), then i is called a hole, gap or multiplicity of L, respectively. Given G, a k-c-labelling is a σ -labelling if $k = \sigma(G)$. A σ -labelling is min-hole if it has the minimum number of holes among all σ -labellings of G.

Theorem 2.1 If G has n vertices and $\sigma(G) \ge n+1$, then $\sigma(G) = \lambda(G) + 2$.

Proof. Suppose $\sigma(G) \geq n+1$. Let L be a σ -labelling, then $H(L) \neq \emptyset$. Without loss of generality, assume $L_{\sigma-1} = \emptyset$. Since L is also an L(2,1)-labelling, so $\lambda(G) \leq \sigma(G) - 2$. By (*), $\sigma(G) = \lambda(G) + 2$. Q.E.D.

By Theorems 1.1 and 2.1, to prove Theorem 1.2 it remains to show that G^c is Hamiltonian if and only if $\sigma(G) \leq n$. Thus it suffices to prove the following:

Theorem 2.2 Let G be a graph on n vertices. Suppose L is a min-hole σ -labelling of G, the following are equivalent:

- (1) $G(L) = \emptyset$;
- (2) G^c is Hamiltonian;
- (3) $\sigma(G) \leq n$.

We shall prove Theorem 2.2 by using the next three lemmas.

Lemma 2.3 Let L be a min-hole σ -labelling of G. If $h \in H(L)$, then $l_{h-1} = l_{h+1} > 0$, and the subgraph of G induced by $L_{h-1} \cup L_{h+1}$ is a perfect matching, where the indices are taken modulo $\sigma(G)$.

Proof. Let $\sigma(G) = k$. Suppose $h \in H(L)$, i.e., $L_h = \emptyset$. Since L is a σ -labelling, it is impossible to have two consecutive holes. Hence $l_{h-1}, l_{h+1} > 0$.

Observe that each vertex in L_{h-1} is adjacent to at most one vertex in L_{h+1} , and vice versa. It suffices to show that each vertex in L_{h-1} is adjacent to L_{h+1} (it is symmetrical to show that each vertex in L_{h+1} is adjacent to L_{h-1}). Suppose to the contrary, there exists $v \in L_{h-1}$ such that v is not adjacent to L_{h+1} . Without loss of generality, assume h-1=0. There are two cases.

Case 1: If $L_0 = \{v\}$. Define a function L' on V(G) by L'(u) = L(u) - 1 if $u \neq v$; L'(v) = L(v) = 0. By the assumption that v is not adjacent to L_{h+1} , one can verify that L' is a (k-1)-c-labelling of G, a contradiction.

Case 2: If $\{u, v\} \subseteq L_0$. Define a function L' on V(G) by L'(x) = L(x) if $x \neq v$; L'(v) = 1. Then L' is a σ -labelling with fewer holes than L, a contradiction. Q.E.D.

Lemma 2.4 If L is a min-hole σ -labelling of G, then $G(L) = \emptyset$ or $M(L) = \emptyset$.

Proof. Let $\sigma(G) = k$. Suppose L is a min-hole σ -labelling of G with $G(L) \neq \emptyset$ and $M(L) \neq \emptyset$. Let $g \in G(L)$ and $m \in M(L)$ such that $|g - m|_k$ is the smallest. Without loss of generality, assume m = 0 and g < k/2. Then $g \geq 2$ and $l_i = 1$ for all $i = 1, 2, \dots, g - 1, g + 1$.

Let $L_{g-1} = \{v_{g-1}\}$, $L_{g+1} = \{v_{g+1}\}$, then any vertex in L_0 is adjacent to v_{g-1} or v_{g+1} . For otherwise, if there exists $v \in L_0$ with $vv_{g-1}, vv_{g+1} \notin E(G)$, then defining L'(v) = g and L'(u) = L(u) for $u \neq v$ results in a k-c-labelling with fewer holes. Since both v_{g-1} and v_{g+1} are adjacent to at most one vertex in L_0 , we conclude that $l_0 = 2$. Let $L_0 = \{x, y\}$ so that $xv_{g-1}, yv_{g+1} \in E(G)$, and $xv_{g+1}, yv_{g-1} \notin E(G)$. Define:

$$L'(v) = \begin{cases} g - L(v), & \text{if } 1 \le L(v) \le g - 1; \\ g, & \text{if } v = x; \\ L(v), & \text{otherwise.} \end{cases}$$

One can verify that L' is a σ -labelling with fewer holes, a contradiction. Q.E.D. Suppose f is a k-c-labelling of G. For any $u, v \in V(G)$, if f(u) = f(v) or $f(u) \equiv$

 $f(v) \pm 1 \pmod{k}$, then $uv \in E(G^c)$. The following lemma can be proved easily.

Lemma 2.5 If f is a k-c-labelling of G with $H(f) = \emptyset$, then G^c is Hamiltonian.

Proof of Theorem 2.2. (1) \Rightarrow (2): By Lemma 2.5, it suffices to consider that $H(L) \neq \emptyset$. Let $h \in H(L)$, since $G(L) = \emptyset$, by Lemma 2.3, we have $l_{h-1} = l_{h+1} \geq 2$ and there exist $v_{h-1} \in L_{h-1}$, $v_{h+1} \in L_{h+1}$ such that $v_{h-1}v_{h+1} \in E(G^c)$.

To get a Hamilton cycle in G^c , first trace the vertices in L_0, L_1, L_2, \cdots successively until there is a hole h. From the previous paragraph, there exists $v_{h-1}v_{h+1} \in E(G^c)$. Hence, the process can be continued until a Hamilton cycle is obtained.

- (2) \Rightarrow (3): Suppose G^c has a Hamilton cycle, $v_0, v_1, \dots, v_{n-1}, v_0$, then the labelling $L(v_x) = x$ is an n-c-labelling of G. Hence $\sigma(G) \leq n$.
- (3) \Rightarrow (1): Suppose $\sigma(G) \leq n$. Let L be a min-hole σ -labelling of G. If $G(L) \neq \emptyset$, by Lemma 2.5, $M(L) = \emptyset$. Hence L is injective, which is impossible since $\sigma \leq n$ and $G(L) \neq \emptyset$. Q.E.D.

The following corollary follows immediately from Theorems 1.1, 1.2 and 2.1.

Corollary 2.6 If G is a graph on n vertices, the following are equivalent:

- (1) $\sigma(G) = n + 1;$
- (2) $\sigma(G) = n + 1$ and $\lambda(G) = n 1$;
- (3) $p_v(G^c) = 1$, and G^c is not Hamiltonian.

Denote the union of two vertex-disjoint graphs G and H by $G \cup H$. The *join* of G and H is the graph $G \vee H$ obtained from $G \cup H$ by joining each vertex in G to each vertex in H. For any integers p and q with p < q/2, define the graph $G_{p,q} = K_p \vee (K_p^c \cup K_{q-2p})$, where K_n is a complete graph on n vertices. Chvátal [2] proved that $G_{p,q}$ is maximal non-Hamiltonian. Thus by Corollary 2.6, we have:

Corollary 2.7 If
$$G = G_{p,q}^c$$
, then $\sigma(G) = q + 1$ and $\lambda(G) = q - 1$.

3 Graphs with Hamiltonian Complements

For any G, by (*), $\sigma(G)$ is either $\lambda(G) + 1$ or $\lambda(G) + 2$. If G^c is not Hamiltonian, by Theorems 1.2 and 2.1, $\sigma(G) = \lambda(G) + 2$. We show both possible values of $\sigma(G)$,

 $\lambda(G) + 1$ and $\lambda(G) + 2$, are attained by some graphs with Hamiltonian complements.

We start with diameter two graphs for which any distance two labelling is one-toone. By Theorems 1.1 and 1.2, we have:

Theorem 3.1 Suppose G is a graph on n vertices. If G is of diameter two and G^c is Hamiltonian, then $\sigma(G) = \lambda(G) + 1 = n$.

An example of Theorem 3.1 is the Petersen Graph. Another example is the Cartesian product of complete graphs $K_m \times K_n$, m, n > 2. The Cartesian product of graphs G and H, $G \times H$, has the vertex set $V = \{(u, v) : u \in G, v \in H\}$ and edge set $E = \{(u, v)(w, x) : (u = w \text{ and } vx \in E(H)) \text{ or } (v = x \text{ and } uw \in E(G))\}.$

Theorem 3.2 For any $m, n \ge 2$, let $G = K_m \times K_n$, then

$$\sigma(G) = \begin{cases} \lambda(G) + 2 = 6, & \text{if } m = n = 2; \\ \lambda(G) + 1 = mn, & \text{otherwise.} \end{cases}$$

Proof. If m = n = 2, then $p_v(G^c) = 2$, so $\sigma(G) = 6$.

Suppose $m \leq n$. Since G has diameter two and mn vertices, by Theorem 3.1, it suffices to show that G^c is Hamiltonian. Let $V(K_m) = \{u_1, u_2, \dots, u_m\}$ and $V(K_n) = \{v_1, v_2, \dots, v_n\}$, then $E(G^c) = \{(u_i v_j)(u_k v_l) : i \neq k, j \neq l\}$. For the two cases: $(m = 2 \text{ and } n \geq 3)$ and (m = n = 3), one can find the Hamilton cycles in G^c , respectively: $(u_2 v_2), (u_1 v_1), (u_2 v_3), (u_1 v_2), (u_2 v_4), (u_1 v_3), \dots, (u_2 v_n), (u_1 v_{n-1}), (u_2 v_1), (u_1 v_n), (u_2 v_2)$; and $(u_1 v_1), (u_2 v_2), (u_3 v_1), (u_1 v_2), (u_2 v_3), (u_3 v_2), (u_1 v_3), (u_2 v_1), (u_3 v_3), (u_1 v_1)$.

If $m \geq 3$, $n \geq 4$, then $(K_m \times K_n)^c$ is regular with degree $(m-1)(n-1) \geq mn/2$. By the well-known Dirac Theorem, G^c is Hamiltonian. Q.E.D.

The result for $\lambda(K_m \times K_n)$ in Theorem 3.2 was proved by Georges et al [3].

Now we focus on cycles and trees. For any cycle, Griggs and Yeh [4] proved that the λ -number is 4. However, the σ -number has two possible values.

Theorem 3.3 For the cycle C_n on n vertices, $n \geq 3$,

$$\sigma(C_n) = \begin{cases} 5, & \text{if } n \equiv 0 \pmod{5}; \\ 6, & \text{if } n \not\equiv 0 \pmod{5}. \end{cases}$$

Proof. Since $\lambda(C_n) = 4$ [4], by (*), $5 \le \sigma(C_n) \le 6$. Suppose $\sigma(C_n) = 5$. Let f be a 5-c-labelling of C_n , $f(V) \subseteq \{0, 1, 2, 3, 4\}$. Assume f(v) = 0 for some v, then the labels for the two neighbors of v must be 2 and 3. Indeed, if f(u) = x, then the labels for the two neighbors of u must be x + 2 and x + 3 (mod 5). This implies that the labelling is well-defined only when $n \equiv 0 \pmod{5}$.

Let T be a tree with maximum degree Δ . Griggs and Yeh [4] proved that $\lambda(T)$ is either $\Delta + 1$ or $\Delta + 2$. Chang and Kuo [1] gave a polynomial algorithm determining the λ -number for trees.

If T is a tree with maximum degree Δ , then clearly $\sigma(T) \geq \Delta + 3$. Furthermore, a $(\Delta + 3)$ -c-labelling for T can be obtained by using a greedy (first-fit) algorithm starting with a vertex of degree Δ . Thus, we have

Theorem 3.4 If T is a tree with maximum degree Δ , then $\sigma(T) = \Delta + 3$.

4 Injective Distance Two Labellings

A one-to-one k-c-labelling (or L(2,1)-labelling, respectively) is called a k-c'-labelling (or L'(2,1)-labelling, respectively). The parameter $\sigma'(G)$ is the minimum k for which a k-c'-labelling exists, and $\lambda'(G)$ is the minimum span of an L'(2,1)-labelling.

The following result was proved, independently, by Georges et al. [3], and by Chang and Kuo [1].

Theorem 4.1 [3, 1] If G is a graph on n vertices, then $\lambda'(G) = n + p_v(G^c) - 2$.

Theorem 4.2 If G is a graph on n vertices, then

$$\sigma'(G) = \begin{cases} n, & \text{if } G^c \text{ is Hamiltonian;} \\ n + p_v(G^c), & \text{otherwise.} \end{cases}$$

Equivalently, $\sigma'(G) = \max\{n, \sigma(G)\}.$

Proof. Clearly $\sigma'(G) \geq \max\{\sigma(G), n\}$. If G^c has a Hamilton cycle, $v_0, v_1, \dots, v_{n-1}, v_0, v_n \in L(v_i) = i, 0 \leq i \leq n-1$, is an n-c'-labelling, so $\sigma'(G) = n$. If G^c is not Hamiltonian, let L be a min-hole σ -labelling. By Theorem 2.2 and Lemma 2.4, L is injective. Thus $\sigma'(G) = \sigma(G)$.

For joins and unions of graphs G and H, observe that $(G \vee H)^c = G^c \cup H^c$ and $(G \cup H)^c = G^c \vee H^c$. Moreover, it is easy to learn that $p_v(G \cup H) = p_v(G) + p_v(H)$, so $p_v((G \vee H)^c) = p_v(G^c) + p_v(H^c) \geq 2$. The following result follows immediately from Theorems 1.2, 4.1 and 4.2:

Theorem 4.3 Given m graphs G_1 , G_2 , \cdots , G_m , let $G = G_1 \vee G_2 \cdots \vee G_m$. Then $\sigma'(G) = \sigma(G) = \sum_{i=1}^m \{\lambda'(G_i) + 2\}.$

The wheel with n spokes, W_n , $n \geq 3$, is the join of the cycle C_n with a single vertex, i.e., $W_n = C_n \vee \{v\}$. By Theorems 3.3 and 4.3, $\sigma'(W_n) = \sigma(W_n) = 8$, if n = 3, 4; and $\sigma'(W_n) = \sigma(W_n) = n + 3$, if n > 4.

To find the σ' -number for unions of graphs, we make use of the following result of Chang and Kuo [1].

Theorem 4.4 [1] For any G and H, $p_v(G \vee H) = \max\{p_v(G) - |V(H)|, p_v(H) - |V(G)|, 1\}.$

Theorem 4.5 If G and H are graphs on m and n vertices respectively, then $\sigma'(G \cup H) = \max\{\sigma'(G), \sigma'(H), m+n\}.$

Proof. It is obvious that $\sigma'(G \cup H) \geq \max\{\sigma'(G), \sigma'(H), m+n\}$. If $(G \cup H)^c$ is Hamiltonian, then by Theorem 4.2, $\sigma'(G \cup H) = m+n \leq \max\{\sigma'(G), \sigma'(H), m+n\}$. If $(G \cup H)^c = G^c \vee H^c$ is not Hamiltonian, then $p_v(G^c) > n$ or $p_v(H^c) > m$ (for if $p_v(G^c) \leq n$ and $p_v(H^c) \leq m$, then $G^c \vee H^c$ is Hamiltonian). By Theorem 4.4, without loss of generality, assume $p_v(G^c \vee H^c) = p_v(G^c) - n \geq 1$. Since $G^c \vee H^c$ is not Hamiltonian, by Theorem 4.2, $\sigma'(G \cup H) = m+n+p_v(G^c \vee H^c) = m+n+p_v(G^c)-n = m+p_v(G^c) = \sigma'(G)$ (since $p_v(G^c) \geq 2$) $\leq \max\{\sigma'(G), \sigma'(H), m+n\}$. Q.E.D.

Acknowledgment. Part of the work was done while the author was visiting the Institute of Mathematics, Academia Sinica, Taiwan. She is grateful to Ko-Wei Lih for inspiring discussion and generous hospitality. She also thanks the two referees for detailed and constructive comments and Silvia Heubach for editorial support.

References

- [1] G. J. Chang and D. Kuo, The L(2,1)-labeling problem on graphs, SIAM J. Disc. Math. 9 (1996) 309–316.
- [2] V. Chvátal, On Hamilton's ideals, J. Comb. Theory Ser. B, 12 (1972) 163–168.
- [3] J. Georges, D. Mauro and M. Whittlesey, Relating path covering to vertex labelings with a condition at distance two, Disc. Math. 135 (1994) 103–111.
- [4] J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586–595.
- [5] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE, 68 (1980) 1497–1514.
- [6] J. van den Heuvel, R. A. Leese and M. A. Shepherd, *Graph labelling and radio channel assignment*, J. Graph Theory 29 (1998) 263–283.