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Abstract

A k-circular distance two labelling (or k-c-labelling) of a graph G is a vertex-
labelling such that the circular difference (mod k) of the labels is at least two for
adjacent vertices, and at least one for vertices at distance two. Given G, denote
0(G) the minimum & for which there exists a k-c-labelling of G. Suppose G
has n vertices, we prove o(G) < n if G¢ is Hamiltonian; and o(G) = n+ p,(G®)
otherwise, where p,(G) is the path covering number of G. We give exact values
of o(G) for some families of graphs such that G¢ is Hamiltonian, and discuss
injective k-c-labellings especially for joins and unions of graphs.
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1 Introduction

Motivated from the channel assignment problem introduced by Hale [5], the distance
two labelling was first introduced and studied by Griggs and Yeh [4]. Given a graph
G, for any u,v € V(G), let dg(u,v) denote the distance between u and v in G. An
L(2,1)-labelling is a function f : V(G) — {0,1,2,---} such that if uv € E(G) then
|f(u) = f(v)| > 2; and if dg(u, v) = 2, then | f(u) — f(v)| > 1. The span of an L(2,1)-
labelling f is defined as m‘zy((G) |f(u) — f(v)]. The A-number, A\(G), is the minimum

)

span among all L(2, 1)-labellings of G.

*Research partially supported by the National Science Foundation under grant DMS-9805945.



We consider a variation of the L(2, 1)-labelling by using a different measurement.
For a positive integer k, a k-circular-labelling (or k-c-labelling for short) of a graph

G is a function, f: V(G) — {0,1,2,---, k — 1}, such that:
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where |z|; := min{|z|,k — |z|} is the circular difference modulo k. The o-number,
0(G), is the minimum k of a k-c-labelling of G. A generalization of this labelling,
namely, circular distance d labelling (with restrictions on vertices of distance < d),
was introduced and studied by ven den Heuvel, Leese and Shepherd [6].

In this Note, only finite simple graphs are considered. To find the minimum span,
we consider without loss of generality only the labellings in which 0 is used. Given a
graph G, the path covering number, p,(G), is the smallest number of vertex-disjoint

paths covering V(G). Georges, Mauro and Whittlesey [3] proved the following result:

Theorem 1.1 [3] Given a graph G on n vertices, then

Sn_la pr’U(GC):l
MG { —n+p(G) =2, ifp.(G7) > 2.

It is known [6] and not hard to observe the following inequalities:

MG)+1<0(G) <AG)+2, forany graph G. (%)

In this Note, we use Theorem 1.1 and (*) to prove:

Theorem 1.2 Given a graph G on n vertices, then

(G) <n, if G¢ is Hamiltonian;
=n+p,(G°), if G¢ is not Hamiltonian.
In Section 3, we give sufficient conditions for each of the two inequalities in (*),
and determine the o-numbers for cycles and trees. In Section 4, we study injective

circular distance two labellings, especially for unions and joins of graphs.



2 Proof of Theorem 1.2

If L is a k-c-labelling of a graph G, define the following for 0 <i < k — 1:

L;:==A{v: L(v) =i} and [; := | L

H(L) = {i L; = 0);

G(L):={i: Li=0and l;_y = liy; = 1};

M(L):={i:l; >2}.
All the indices above are taken (mod k). If i € H(L),G(L) or M (L), then ¢ is called
a hole, gap or multiplicity of L, respectively. Given G, a k-c-labelling is a o-labelling
if k = 0(G). A o-labelling is min-hole if it has the minimum number of holes among

all o-labellings of G.
Theorem 2.1 If G has n vertices and o(G) > n+ 1, then o(G) = AG) + 2.

Proof. Suppose 0(G) > n+1. Let L be a o-labelling, then H (L) # (. Without loss of
generality, assume L,_; = (). Since L is also an L(2, 1)-labelling, so \(G) < o(G) —2.
By (%), 0(G) = A(G) + 2. Q.E.D.

By Theorems 1.1 and 2.1, to prove Theorem 1.2 it remains to show that G¢ is

Hamiltonian if and only if ¢(G) < n. Thus it suffices to prove the following:

Theorem 2.2 Let G be a graph on n vertices. Suppose L is a min-hole o-labelling
of G, the following are equivalent:

(1) G(L) = 0;

(2) G¢ is Hamiltonian;

(3) o(G) < n.

We shall prove Theorem 2.2 by using the next three lemmas.

Lemma 2.3 Let L be a min-hole o-labelling of G. If h € H(L), then l_1 = lp41 > 0,
and the subgraph of G' induced by L, U Ly 1s a perfect matching, where the indices

are taken modulo o(G).



Proof. Let o(G) = k. Suppose h € H(L), i.e., L, = (). Since L is a o-labelling, it is
impossible to have two consecutive holes. Hence l,_1, ;41 > 0.

Observe that each vertex in Lj;_; is adjacent to at most one vertex in Ly, and
vice versa. It suffices to show that each vertex in Lj_; is adjacent to Ly, (it is
symmetrical to show that each vertex in Ly is adjacent to Lj 1). Suppose to the
contrary, there exists v € Lj,_; such that v is not adjacent to Lj.;. Without loss of
generality, assume h — 1 = 0. There are two cases.

Case 1: If Ly = {v}. Define a function L' on V(G) by L'(u) = L(u) — 1 if u # v;
L'(v) = L(v) = 0. By the assumption that v is not adjacent to Ly1, one can verify
that L' is a (k — 1)-c-labelling of G, a contradiction.

Case 2: If {u,v} C Ly. Define a function L' on V(G) by L'(z) = L(x) if = # v;
L'(v) = 1. Then L’ is a o-labelling with fewer holes than L, a contradiction. Q.E.D.

Lemma 2.4 If L is a min-hole o-labelling of G, then G(L) =0 or M(L) = 0.

Proof. Let o(G) = k. Suppose L is a min-hole o-labelling of G with G(L) #
and M (L) # 0. Let g € G(L) and m € M(L) such that |¢g — m|; is the smallest.
Without loss of generality, assume m = 0 and g < k/2. Then g > 2 and [; = 1 for all
i=1,2-g—1,g+1.

Let Ly_1 = {vg_1}, Ly+1 = {vy41}, then any vertex in Ly is adjacent to v,_; or
vg4+1. For otherwise, if there exists v € Ly with vv,_1,vv,41 ¢ E(G), then defining
L'(v) = g and L'(u) = L(u) for u # v results in a k-c-labelling with fewer holes. Since
both v,_; and v, are adjacent to at most one vertex in Lo, we conclude that [y = 2.

Let Ly = {z,y} so that zv,_1, yv,11 € E(G), and 2vg41, yvg_1 ¢ E(G). Define:

g—L(v), ifl1<Lw)<g-—1;

L'(v) =1 g, if v =x;
L(v), otherwise.
One can verify that L' is a o-labelling with fewer holes, a contradiction. Q.E.D.

Suppose f is a k-c-labelling of G. For any u,v € V(G), if f(u) = f(v) or f(u) =
f(v) £1 (mod k), then uv € E(G°). The following lemma can be proved easily.
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Lemma 2.5 If f is a k-c-labelling of G with H(f) =0, then G¢ is Hamiltonian.

Proof of Theorem 2.2. (1) = (2): By Lemma 2.5, it suffices to consider that
H(L) # 0. Let h € H(L), since G(L) = 0, by Lemma 2.3, we have I, 1 = l41 > 2
and there exist v,_1 € Lp_1, vp1 € Lyt such that v,_jvp41 € E(G).

To get a Hamilton cycle in G¢, first trace the vertices in Lo, L, Lo, - - - successively
until there is a hole h. From the previous paragraph, there exists v, vp41 € E(G°).
Hence, the process can be continued until a Hamilton cycle is obtained.

(2) = (3): Suppose G° has a Hamilton cycle, vy, vy, - - -, v,_1, Vg, then the labelling
L(v,) = x is an n-c-labelling of G. Hence o(G) < n.

(3) = (1): Suppose o(G) < n. Let L be a min-hole o-labelling of G. If G(L) # 0,
by Lemma 2.5, M(L) = (). Hence L is injective, which is impossible since ¢ < n and
G(L) # 0. Q.E.D.

The following corollary follows immediately from Theorems 1.1, 1.2 and 2.1.

Corollary 2.6 If G is a graph on n vertices, the following are equivalent:
(1) o(G)=n+1;
(2) o(G)=n+1and N(G) =n—1;
(3) pu(G°) =1, and G° is not Hamiltonian.

Denote the union of two vertex-disjoint graphs G and H by G U H. The join
of G and H is the graph G V H obtained from G'U H by joining each vertex in
G to each vertex in H. For any integers p and ¢ with p < ¢/2, define the graph
Gpq = Ky V (KS UK, 3), where K, is a complete graph on n vertices. Chvétal [2]

proved that G, is maximal non-Hamiltonian. Thus by Corollary 2.6, we have:

Corollary 2.7 If G = G} , then o(G) = ¢+ 1 and \(G) = q — 1.

3 Graphs with Hamiltonian Complements

For any G, by (*), o(G) is either A(G) + 1 or A(G) + 2. If G° is not Hamiltonian,
by Theorems 1.2 and 2.1, 0(G) = A(G) 4+ 2. We show both possible values of o(G),
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A(G)+1 and A\(G) + 2, are attained by some graphs with Hamiltonian complements.
We start with diameter two graphs for which any distance two labelling is one-to-

one. By Theorems 1.1 and 1.2, we have:

Theorem 3.1 Suppose G is a graph on n vertices. If G is of diameter two and G
is Hamiltonian, then o(G) = A(G) +1 = n.

An example of Theorem 3.1 is the Petersen Graph. Another example is the Carte-
sian product of complete graphs K,, x K,,, m,n > 2. The Cartesian product of graphs
G and H, G x H, has the vertex set V = {(u,v) : v € G,v € H} and edge set
E={(u,v)(w,z): (u=w and vx € E(H)) or (v=z and uw € E(Q))}.

Theorem 3.2 For any m,n > 2, let G = K,,, X K,,, then

_ MG +2=6, ifm=n=2
o(G) = { MG) 4+ 1=mn, otherwise.

Proof. If m = n = 2, then p,(G°) = 2, so o(G) = 6.

Suppose m < n. Since G has diameter two and mn vertices, by Theorem 3.1, it
suffices to show that G¢ is Hamiltonian. Let V(K,,) = {u1,us, - -, u,,} and V(K,,) =
{v1,v9, -+, v, }, then E(G) = {(uv;)(ugvy) 1 i # k, j # l}. For the two cases: (m = 2
and n > 3) and (m = n = 3), one can find the Hamilton cycles in G, respectively:
(ugv2), (u1v1), (u2vs), (U1v2), (ugva), (urvs), - - -, (U2vn ), (U1vn-1), (u2v1), (U1vn), (u2v2);
and (uqv1), (ugva), (usv1), (u1v2), (ugvs), (usve), (u1vs), (usvy), (usvs), (uv1).

If m >3, n >4, then (K, x K,)° is regular with degree (m —1)(n —1) > mn/2.
By the well-known Dirac Theorem, G¢ is Hamiltonian. Q.E.D.

The result for A(K,, x K,,) in Theorem 3.2 was proved by Georges et al [3].

Now we focus on cycles and trees. For any cycle, Griggs and Yeh [4] proved that

the A-number is 4. However, the o-number has two possible values.

Theorem 3.3 For the cycle C,, on n vertices, n > 3,

5, ifn=0 (mod5);
"(C")_{ 6, ifnz0 (mod5)



Proof. Since A(C,,) =4 [4], by (*), 5 < o(C,) < 6. Suppose o(C,,) = 5. Let f be
a b-c-labelling of C,,, f(V) C {0,1,2,3,4}. Assume f(v) = 0 for some v, then the
labels for the two neighbors of v must be 2 and 3. Indeed, if f(u) = z, then the labels
for the two neighbors of v must be z + 2 and x + 3 (mod 5). This implies that the
labelling is well-defined only when n = 0 (mod 5). Q.E.D.

Let T be a tree with maximum degree A. Griggs and Yeh [4] proved that A(7') is
either A + 1 or A 4+ 2. Chang and Kuo [1] gave a polynomial algorithm determining
the A-number for trees.

If T is a tree with maximum degree A, then clearly o(T) > A + 3. Furthermore,
a (A + 3)-c-labelling for T can be obtained by using a greedy (first-fit) algorithm

starting with a vertex of degree A. Thus, we have

Theorem 3.4 [f T is a tree with mazimum degree A, then o(T) = A + 3.

4 Injective Distance Two Labellings

A one-to-one k-c-labelling (or L(2, 1)-labelling, respectively) is called a k-c-labelling
(or L'(2,1)-labelling, respectively). The parameter ¢’'(G) is the minimum & for which
a k-c’-labelling exists, and X'(G) is the minimum span of an L/(2, 1)-labelling.

The following result was proved, independently, by Georges et al. [3], and by
Chang and Kuo [1].

Theorem 4.1 /3, 1] If G is a graph on n vertices, then N'(G) = n + p,(G¢) — 2.

Theorem 4.2 If G is a graph on n vertices, then

o'(Q) = n, if G¢ is Hamiltonian,
| n+ po(G°), otherwise.

Equivalently, o'(G) = max{n,o(G)}.

Proof. Clearly 0/(G) > max{c(G),n}. If G has a Hamilton cycle, vo, vy, - - -, vp—1, Vo,
then L(v;) =14, 0 <i <n—1,is an n-c-labelling, so ¢/(G) = n. If G° is not Hamil-
tonian, let L be a min-hole o-labelling. By Theorem 2.2 and Lemma 2.4, L is injective.

Thus o'(G) = o(G). Q.E.D.



For joins and unions of graphs G and H, observe that (G'V H)¢ = G°U H® and
(GUH)® = G°V H°. Moreover, it is easy to learn that p,(GUH) = p,(G) +p,(H), so
po((GV H)) = py(G°) + py(H®) > 2. The following result follows immediately from
Theorems 1.2, 4.1 and 4.2:

Theorem 4.3 Given m graphs Gy, Ga, -+, G,,, let G = GV Gy---V G,,. Then
o'(G)=0(G) = .;{/\'(Gi) + 2}.

The wheel with n spokes, W,,, n > 3, is the join of the cycle C, with a single
vertex, i.e., W, = C, V {v}. By Theorems 3.3 and 4.3, ¢/(W,,) = o(W,) = 8, if
n=3,4; and o'(W,,) = o(W,,)) =n+3,if n > 4.

To find the ¢’-number for unions of graphs, we make use of the following result of

Chang and Kuo [1].

Theorem 4.4 [1] For any G and H, p,(GV H) = max{p,(G) — |V(H)|,p,(H) —
V(G 1}

Theorem 4.5 If G and H are graphs on m and n vertices respectively, then o'(G U
H) = max{o'(G),0'(H),m + n}.

Proof. It is obvious that ¢'(G U H) > max{d'(G),0’(H),m + n}. If (GU H)* is
Hamiltonian, then by Theorem 4.2, o/(GUH) = m+n < max{d'(G),o'(H), m+n}.

If (GUH)® = G°V H° is not Hamiltonian, then p,(G®) > n or p,(H¢) > m (for
if p,(G°) < n and p,(H¢) < m, then G°V H¢ is Hamiltonian). By Theorem 4.4,
without loss of generality, assume p,(G¢V H¢) = p,(G°) —n > 1. Since G°V H¢ is not
Hamiltonian, by Theorem 4.2, o'(GUH) = m+n-+p,(G°VH®) = m+n+p,(G°)—n =
m + p,(G°) = o'(G) (since p,(G°) > 2) < max{o'(G),0'(H),m + n}. Q.E.D.
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