NOETHERIAN GENERALIZED POWER SERIES RINGS

GARY BROOKFIELD

ABSTRACT. Let R be a unitary ring and (M, \leq) a strictly ordered monoid. We show that, if (M, \leq) is positively ordered, then the generalized power series ring $R[[M, \leq]]$ is left Noetherian, if and only if, R is left Noetherian and M is finitely generated, if and only if, R is left Noetherian and $R[[M, \leq]]$ is a homomorphic image of the power series ring $R[[x_1, x_2, \ldots, x_n]]$ for some $n \in \mathbb{N}$.

1. Introduction

Let R be a unitary ring, (M, \leq) a strictly ordered commutative monoid and $R[[M, \leq]]$ the corresponding generalized power series ring. There are many questions one could ask about how the properties of $R[[M, \leq]]$ are determined by the properties of R and M. One of the hardest seems to be the question of when $R[[M, \leq]]$ is Noetherian. Partial answers and special cases are discussed in [6], [10] and [11]. Some examples: If $R[[M, \leq]]$ is left Noetherian, then R must be too [6, 5.2(i)]. If $R[[M, \leq]]$ is left Noetherian and M is cancellative, then M is the sum of a finitely generated monoid and an Abelian group [6, 5.2(ii)] [10]. If (M, \leq) is narrow, cancellative and torsion free, M is the sum of a finitely generated monoid and an Abelian group, and R is left Noetherian, then $R[[M, \leq]]$ is Noetherian [6, 5.5] [10].

In this paper we deal with the case that (M, \leq) is positively ordered. In this circumstance the partial order \leq is closely tied to the algebraic structure of the monoid, and so we are able give a complete answer: $R[[M, \leq]]$ is left Noetherian if and only if R is left Noetherian and M is finitely generated.

The condition on M, that it is finitely generated, seems to say nothing about the partial order \leq . Indeed it turns out that the existence of a positive strict partial order on M means that, if $R[[M, \leq]]$ is left Noetherian, then $R[[M, \leq]]$ is simply the set of <u>all</u> functions from M to R, that is, the particular partial order \leq does not determine $R[[M, \leq]]$. This in turn implies that $R[[M, \leq]]$ is a homomorphic image of the (usual) power series ring $R[[x_1, x_2, \ldots, x_n]]$ for some $n \in \mathbb{N}$.

It is interesting to contrast the main theorem with Gilmer's theorem that, given a ring R and a monoid M, the monoid ring R[M] is left Noetherian if and only if R is left Noetherian and M is finitely generated [2, 7.7] (see also [1]). Neither theorem is a special case or generalization of the other, but some of the techniques used in Gilmer's proof are also used in this paper.

Date: June 24, 2003.

1991 Mathematics Subject Classification. Primary 16P40, 16S36, 20M25.

2. Ordered Sets

Let (\mathcal{L}, \leq) be a partially ordered set. Then \mathcal{L} is **Artinian (Noetherian)** if every nonempty subset of \mathcal{L} has a minimal (maximal) element, or equivalently, \mathcal{L} satisfies the descending (ascending) chain condition. An **antichain** of \mathcal{L} is a subset $A \subseteq \mathcal{L}$ such that $x \leq y$ implies x = y for all $x, y \in A$. \mathcal{L} is **narrow** if every antichain of \mathcal{L} is finite. If \mathcal{K} is a subset of \mathcal{L} , then \mathcal{K} is Artinian (Noetherian, narrow) if \mathcal{L} is Artinian (Noetherian, narrow). A **lower set** of \mathcal{L} is a subset $I \subseteq \mathcal{L}$ such that $x \leq y \in I$ implies $x \in I$ for all $x, y \in \mathcal{L}$. We write $\psi \mathcal{L}$ for the set of lower sets of \mathcal{L} ordered by inclusion.

Lemma 2.1. Let $\sigma: \mathcal{K} \to \mathcal{L}$ be an increasing map between partially ordered sets.

- (1) If σ is strictly increasing and \mathcal{L} is Artinian (Noetherian), then \mathcal{K} is Artinian (Noetherian).
- (2) If σ is surjective and $\Downarrow \mathcal{K}$ is Artinian (Noetherian), then $\Downarrow \mathcal{L}$ is Artinian (Noetherian).

Proof. (1) Routine.

(2) Since σ is increasing, if $I \in \mathcal{L}$, then $\sigma^{-1}(I) \in \mathcal{L}$. Since σ is surjective, σ^{-1} is a strictly increasing map from \mathcal{L} to \mathcal{L} , and the claim follows from (1).

The following two lemmas are standard. See for example [3], [5], [8, 1.4].

Lemma 2.2. Let \mathcal{L} be a partially ordered set. Then the following are equivalent:

- (1) $\Downarrow \mathcal{L}$ is Artinian.
- (2) For every infinite sequence $(a_n)_{n\in\mathbb{N}}$ in \mathcal{L} there are i < j such that $a_i \leq a_j$.
- (3) \mathcal{L} is Artinian and narrow.

Lemma 2.3. Let K and L be partially ordered sets. If $\Downarrow K$ and $\Downarrow L$ are Artinian, then $\Downarrow (K \times L)$ is Artinian.

Here and elsewhere in this paper, the order on a product $\mathcal{K} \times \mathcal{L}$ is defined by $(x,y) \leq (x'y')$ if $x \leq x'$ and $y \leq y'$.

3. Ordered Monoids

All monoids in this paper are commutative with monoid operation +. If X and Y are subsets of a monoid M, then $X+Y=\{x+y\mid x\in X \text{ and }y\in Y\}$. In particular, $X+Y=\emptyset$ if $X=\emptyset$ or $Y=\emptyset$. If Y is a subset of M, we will write $\langle Y\rangle$ for the submonoid of M that Y generates.

Any monoid M has the **algebraic or natural preorder** defined by $a \leq b$ if a+c=b for some $c \in M$. In general, $a \leq b \leq a$ does not imply a=b, so \leq is not always a partial order on M. In this paper the symbol \leq will always be used for the algebraic preorder of a monoid.

A monoid F is **free** with **basis** $\emptyset \neq B \subseteq F$ if any map from B to a monoid M extends uniquely to a monoid homomorphism from F to M. In this circumstance, $F \cong \mathbb{F}^{(B)}$, the direct sum of copies of \mathbb{F} indexed by B where \mathbb{F} is the set of nonnegative integers with addition as monoid operation. Any set B is contained as a basis in a free monoid, in particular, any monoid is a homomorphic image of a free monoid.

If a free monoid F has a finite basis B with $|B| = n \in \mathbb{N}$, then $F \cong \mathbb{F}^n \cong \mathbb{F} \times \mathbb{F} \times \ldots \times \mathbb{F}$ (n times). Of course, a monoid M is finitely generated if and only if there is a surjective monoid homomorphism $\sigma : \mathbb{F}^n \to M$ for some $n \in \mathbb{N}$.

The algebraic preorder on any free monoid is a partial order. The algebraic preorder on \mathbb{F} coincides with the usual order of the integers. The algebraic preorder on \mathbb{F}^n is the product order. The lower sets of (\mathbb{F}, \preceq) are \emptyset , \mathbb{F} and the sets $\{0, 1, \ldots, N\}$ for $N \in \mathbb{F}$ and so $\psi(\mathbb{F}, \preceq)$ is Artinian. From 2.3, $\psi(\mathbb{F}^n, \preceq)$ is Artinian for $n \in \mathbb{N}$. Thus for any free monoid F with finite basis, $(F \preceq)$, and $\psi(F, \preceq)$ are Artinian.

An **ordered monoid** is pair (M, \leq) where M is a monoid and \leq is a partial order on M such that the addition map $+: M \times M \to M$ is increasing with respect to \leq , or, equivalently, $a \leq b$ implies $a + c \leq b + c$ for all $a, b, c \in M$. If (M, \leq) and (N, \leq) are ordered monoids, then a **strict monoid homomorphism** $\sigma: (M, \leq) \to (N, \leq)$ is a monoid homomorphism $\sigma: M \to N$ which is strictly increasing with respect to the partial orders \leq .

A **strictly ordered monoid** is pair (M, \leq) where M is a monoid and \leq is a partial order on M such that the addition map $+: M \times M \to M$ is strictly increasing with respect to \leq , or, equivalently, a < b implies a + c < b + c for all $a, b, c \in M$. If (M, \leq) is an ordered monoid, then M is strictly ordered if and only if $a \leq b$ and a + c = b + c imply a = b for all $a, b, c \in M$.

An ordered monoid (M, \leq) is **positively ordered** if $0 \leq a$ for all $a \in M$. In this circumstance, $a \leq b$ implies $a \leq b$ for all $a, b \in M$. For example, if the algebraic order \leq on M happens to be a partial order, then (M, \leq) is a positively ordered monoid.

If an ordered monoid is both positively ordered and strictly ordered, we will say it is **positive strictly ordered** (rather than "strict positively ordered" which would conflict with our definition of a strict monoid.)

In view of the next lemma we will say that a monoid M is **strict** if a+x+y=a implies x=y=0 for all $a,x,y\in M$.

Lemma 3.1. If (M, \leq) is a positive strictly ordered monoid, then M is strict.

Proof. Suppose a+x+y=a for some a,x,y in M. Then $(a,0) \le (a,x+y)$ with a+0=a+x+y. By strictness (a,0)=(a,x+y). Thus x+y=0. But then we have $(0,0) \le (x,y)$ with 0+0=x+y, so by strictness (0,0)=(x,y), and x=y=0.

It is easy to see that any free monoid is strict. More generally we have the following:

Lemma 3.2. For a nontrivial monoid M the following are equivalent:

- (1) M is strict.
- (2) \leq is a partial order and a + x = a implies x = 0 for all $a, x \in M$.
- (3) There is a surjective strict monoid homomorphism $\sigma: (F, \preceq) \to (M, \preceq)$ for some free monoid F.
- (4) (M, \preceq) is a strictly ordered monoid.

Proof. (1) \Rightarrow (2): If $a \leq b \leq a$ in M, then there are $x, y \in M$ such that a + x = b and b + y = a. Then a = a + x + y, so by strictness, x = y = 0 and a = b. Thus \leq is a partial order. The second claim is immediate.

 $(2) \Rightarrow (3)$: There is certainly a monoid surjection $\sigma : F \to M$ for some free monoid F. Without loss of generality we can assume that none of the basis elements of F map to 0 under σ .

It is clear that σ is an increasing map from (F, \preceq) to (M, \preceq) . To show it is strictly increasing it remains to show that $x \preceq y$ and $\sigma(x) = \sigma(y)$ imply x = y.

If $x \leq y$ and $\sigma(x) = \sigma(y)$, then x + z = y and $\sigma(x) + \sigma(z) = \sigma(y) = \sigma(x)$ for some $z \in M$. By assumption this implies $\sigma(z) = 0$. If $z \neq 0$, then there is some basis element b of F such that z = b + w for some $w \in F$. But then $0 = \sigma(z) = \sigma(b) + \sigma(w)$, and we have $0 \leq \sigma(b) \leq 0$. Since \leq is a partial order, this implies $\sigma(b) = 0$, contrary to our choice of basis. So z = 0 and x = y.

(3) \Rightarrow (4): Since (M, \leq) is at least an ordered monoid and σ is surjective, it suffices to show that, for all $a, b, c \in F$, $\sigma(a) \leq \sigma(b)$ and $\sigma(a) + \sigma(c) = \sigma(b) + \sigma(c)$ imply $\sigma(a) = \sigma(b)$.

If $\sigma(a) \leq \sigma(b)$, then $\sigma(b) = \sigma(a) + \sigma(d)$ for some $d \in F$, and, if $\sigma(a) + \sigma(c) = \sigma(b) + \sigma(c)$, then $\sigma(a+c) = \sigma(a+d+c)$. Since $a+c \leq a+c+d$ and σ is strictly increasing, this implies a+c=a+c+d. But F is strict, so we have d=0 and hence $\sigma(b) = \sigma(a) + \sigma(d) = \sigma(a)$.

 $(4) \Rightarrow (1)$: This follows directly from 3.1 since \leq is a positive order on M. \square

Of course, if M is a finitely generated strict monoid, then the free monoid F in (3) can be chosen to have finite basis and so there is a surjective strict monoid homomorphism $\sigma: (\mathbb{F}^n, \preceq) \to (M, \preceq)$ for some $n \in \mathbb{N}$.

Lemma 3.3. Let M be a strict monoid. Then $\downarrow (M, \preceq)$ is Artinian if and only if M is finitely generated.

Proof. Suppose $\psi(M, \preceq)$ is Artinian. Let $I \in \psi(M, \preceq)$ be minimal such that $0 \in I$ and $M = I + \langle Y \rangle$ for some finite set $Y \subseteq M$. To prove the claim it suffices to show that $I = \{0\}$.

Suppose not. Let $0 \neq b \in I$ and set $J = I \cap \{a \in M \mid b \not\leq a\}$. It is easy to check that J is a lower set of (M, \preceq) , J contains 0, and, since $b \notin J$, J is strictly smaller than I. We will show that $M = J + \langle Y, b \rangle$, which contradicts the minimality of I.

Suppose to the contrary that $M\setminus (J+\langle Y,b\rangle)$ is nonempty. Since (M,\preceq) is Artinian, there is some minimal element x in $M\setminus (J+\langle Y,b\rangle)$. Since $M=I+\langle Y\rangle$, there are $i\in I$ and $y\in \langle Y\rangle$ such that x=i+y. The element i cannot be in J since otherwise $x\in J+\langle Y\rangle$. Thus $b\preceq i$, and i=i'+b for some $i'\in I$. Set x'=i'+y. Then x=x'+b so $x'\preceq x$, and $x'\not\in J+\langle Y,b\rangle$ since otherwise the same would be true of x. By the minimality of x we get x'=x and so x'=x'+b. Since the monoid is strict this implies b=0 contrary to our assumption.

Conversely, if M is finitely generated, there is a monoid surjection $\sigma: \mathbb{F}^n \to M$ for some $n \in \mathbb{N}$. Since σ is, in particular, an increasing map from (M, \preceq) to (\mathbb{F}^n, \preceq) , the claim follows from 2.1(2) and the fact that $\psi(\mathbb{F}^n, \preceq)$ is Artinian.

4. Generalized Power Series Rings

For a ring R and a commutative monoid M, let R[[M]] be the set of all functions from M to R. Addition of such functions is defined by (f+g)(x)=f(x)+g(x) for $x\in M$. R[[M]] is a left R-module under the operation defined by (rf)(x)=rf(x) for $x\in M$, $r\in R$ and $f\in R[[M]]$. We write $X^a\in R[[M]]$ for the function such that $X^a(a)=1$ and $X^a(x)=0$ if $x\neq a$. Any element $f\in R[[M]]$ can then be written in the form $f=\sum_{a\in M}f(a)X^a$.

Multiplication of $f, g \in R[[M]]$ is defined by $(fg)(x) = \sum_{x_1+x_2=x} f(x_1)g(x_2)$ for $x \in M$, if, for each $x \in M$, the set

$$\{(x_1, x_2) \mid x_1 + x_2 = x \text{ and } f(x_1) \neq 0 \text{ and } g(x_2) \neq 0\}$$

is finite. For example, $X^a X^b = X^{a+b}$ for all $a, b \in M$.

It may be that fg is defined for all $f,g \in R[[M]]$, in which case R[[M]] is a ring. This happens, for example, if for each $x \in M$ the set $\{(x_1,x_2) \mid x_1+x_2=x\}$ is finite. Thus $R[[\mathbb{F}]]$ and more generally $R[[\mathbb{F}^n]]$, for $n \in \mathbb{N}$, are rings. These are called **rings of formal power series** with coefficients in R, and are written R[[X]], and $R[[X_1,X_2,\ldots,X_n]]$ respectively.

There seems to be no proof in the literature of the following well known result except as a special case of a more general and hence more complicated theorem. See, for example [11, 4.6] or [9]. For completeness, we give a proof which is essentially that given in [4, 3.3] for the case that the ring R is commutative.

Theorem 4.1. If R is a left Noetherian ring, then so is $R[[\mathbb{F}^n]]$.

Proof. We prove first that $S = R[[X]] = R[[\mathbb{F}]]$ is left Noetherian, the n = 1 case. For a left ideal $I \leq S$ and $m \in \mathbb{F}$, let $I_m = \{f(m) \mid f \in I \cap SX^m\}$. It is easy to see that I_m is a left ideal of R and hence there is a finite set $G_m \subseteq I \cap SX^m$ such that $\{g(m) \mid g \in G_m\}$ generates I_m .

Since $I_0 \leq I_1 \leq I_2 \leq \ldots$, there is some $k \in \mathbb{F}$ such that $I_m = I_k$ for all $m \geq k$, and so, without loss of generality, we can assume that

$$G_m = X^{m-k}G_k = \{X^{m-k}g \mid g \in G_k\}$$

for $m \geq k$. Set $G = \bigcup_{m \leq k} G_m$, a finite set. We will show that G generates I, in particular, I is finitely generated.

Suppose $f \in I$. Since $f \in I \cap SX^0 = I$, there is a linear combination g_0 of the elements of G_0 with coefficients in R such that $f - g_0 \in I \cap SX^1$. Then there is a linear combination g_1 of the elements of G_1 with coefficients in R such that $f - g_0 - g_1 \in I \cap SX^2$. Iterating this process produces an infinite sequence g_0, g_1, g_2, \ldots in I such that for $m \in \mathbb{F}$, $f - g_0 - g_1 - \ldots - g_m \in I \cap SX^{m+1}$ and g_m is an R-linear combination of the elements of G_m . Since $g_m \in SX^m$ for each m, this implies $f = \sum_{m \in \mathbb{F}} g_m$.

For $m \leq k$ we have $G_m \subseteq G$ and for m > k, we have $G_m \subseteq X^{m-k}G$. Hence, for each $m \in \mathbb{F}$ we can write $g_m = \sum_{g \in G} h_{mg}g$ where for $m \leq k$, $h_{mg} \in R$ and for m > k, $h_{mg} \in RX^{m-k}$. If we now set $h_g = \sum_{m \in \mathbb{F}} h_{mg} \in S$, then $f = \sum_{g \in G} h_g g$ as required.

The general case, $R[[\mathbb{F}^n]]$, follows by induction from the n=1 case, since $R[[\mathbb{F}^n]] \cong (R[[\mathbb{F}^{n-1}]])[[\mathbb{F}]]$, as may be easily checked.

Given a ring R and a monoid M, it may be that fg is not defined for all $f,g \in R[[M]]$. In this case one can restrict attention to certain subsets of R[[M]] which do form rings. An example of this is the generalized power series ring which is constructed from a ring R and a strictly ordered monoid (M, \leq) as follows: For a function $f \in R[[M]]$, define the **support** of f by supp $f = \{a \in M \mid f(a) \neq 0\}$. Then the **generalized power series ring** is

$$R[[M, \leq]] = \{ f \in R[[M]] \mid \forall (\text{supp } f, \leq) \text{ is Artinian} \},$$

that is, $R[[M, \leq]]$ is the set of functions in R[[M]] whose support is Artinian and narrow in the \leq partial order. See [7, 1.16] for the proof that, if $f, g \in R[[M, \leq]]$, then fg is defined and $fg \in R[[M, \leq]]$.

If $\psi(M, \leq)$ happens to be Artinian, then all subsets of M are Artinian and narrow, and so $R[[M, \leq]] = R[[M]]$. For example, $\psi(\mathbb{F}, \preceq)$ and $\psi(\mathbb{F}^n, \preceq)$ are Artinian, and so $R[[\mathbb{F}, \preceq]] = R[[\mathbb{F}]]$ and $R[[\mathbb{F}^n, \preceq]] = R[[\mathbb{F}^n]]$.

The following is a special case of [7, 1.17].

Lemma 4.2. Let R be a ring and $\sigma:(N,\leq)\to(M,\leq)$ a strict monoid homomorphism. Then σ induces a ring homomorphism $\sigma^*:R[[N,\leq]]\to R[[M,\leq]]$. If σ is surjective, then so is σ^* .

Proof. Since σ is strict, $\sigma^{-1}(x)$ is an antichain in (N, \leq) for all $x \in M$. Thus, if $f \in R[[N, \leq]]$, then $\sigma^{-1}(x) \cap \text{supp } f$ is finite and we can define $\sigma^{\star}(f) = f^{\star}$ where $f^{\star}(x) = \sum_{y \in \sigma^{-1}(x)} f(y)$ for $x \in M$. It is then routine to check that σ^{\star} has the required properties.

It follows easily from the definitions that, if $f, g \in R[[M, \leq]]$, then

$$\operatorname{supp}(f+g)\subseteq\operatorname{supp} f\cup\operatorname{supp} g$$

and

$$\operatorname{supp}(fg) \subseteq \operatorname{supp} f + \operatorname{supp} g.$$

Theorem 4.3. Let R be a ring, and (M, \leq) a positive strictly ordered monoid. Then $R[[M, \leq]]$ is left Noetherian if and only if R is left Noetherian and M is finitely generated. Moreover, in this circumstance, $\psi(M, \leq)$ is Artinian, and $R[[M, \leq]] = R[[M]]$ is a homomorphic image of the ring $R[[\mathbb{F}^n]]$ for some $n \in \mathbb{N}$.

Proof. If M is trivial, then $R[[M, \leq]] \cong R$ and the claim is obvious. So we will henceforth assume that M is nontrivial. Note that, from 3.1 and 3.2, M is strict and \leq is a partial order on M.

Suppose $S = R[[M, \leq]]$ is left Noetherian.

(1) R is left Noetherian: [6, 5.2(i)] [10, 3.1(i)] For a left ideal $I \subseteq R$ define

$$I_S = \{ f \in S \mid f(x) \in I \text{ for all } x \in M \}.$$

It is routine to check that I_S is a left ideal of S and that the map $I \mapsto I_S$ from the set of ideals of R to the set of ideals of S is strictly increasing. By 2.1(1), R is left Noetherian.

(2) $\Downarrow (M, \preceq)$ is Artinian: By 2.2 it suffices to show that for any infinite sequence $(a_n)_{n\in\mathbb{N}}$ in M there are i < j in \mathbb{N} such that $a_i \preceq a_j$.

Since S is left Noetherian and

$$SX^{a_1} \subseteq SX^{a_1} + SX^{a_2} \subseteq SX^{a_1} + SX^{a_2} + SX^{a_3} \subseteq \dots$$

there is some $j \in \mathbb{N}$ such that $X^{a_j} \in \sum_{i < j} SX^{a_i}$. Thus $X^{a_j} = \sum_{i < j} f_i X^{a_i}$ for some $f_1, f_2, \ldots \in S$ and $a_j \in \bigcup_{i < j} (a_i + \text{supp } f_i)$. This means that for some i < j and $t \in \text{supp } f_i$ we have $a_j = a_i + t$, in particular, $a_i \leq a_j$.

(3) M is finitely generated: Since M is strict, this follows immediately from (2) and 3.3.

Conversely, suppose that R is left Noetherian and M is finitely generated. From 3.2, there is a strict monoid surjection $\sigma: (\mathbb{F}^n, \preceq) \to (M, \preceq)$ for some $n \in \mathbb{N}$. Since \leq is a positive order, we have $a \leq b \implies a \leq b$ for all $a, b \in M$. In other words, the

identity map from (M, \preceq) to (M, \leq) is a strict monoid surjection. Composing these two maps gives a strict monoid surjection from (\mathbb{F}^n, \preceq) to (M, \leq) , and so by 4.2, $R[[M, \leq]]$ is a homomorphic image of the ring $R[[\mathbb{F}^n, \preceq]] = R[[\mathbb{F}^n]]$. Since $R[[\mathbb{F}^n]]$ is left Noetherian, so is $R[[M, \leq]]$.

Finally, if $R[[M, \leq]]$ is left Noetherian, then from above, $\psi(M, \leq)$ is Artinian. Applying 2.1(2) to the identity map (M, \leq) to (M, \leq) we get that $\psi(M, \leq)$ is Artinian. Thus all subsets of (M, \leq) are Artinian and narrow and $R[[M, \leq]] = R[[M]]$.

References

- [1] Brookfield, Gary Commutative Noetherian Semigroups are Finitely Generated, Semigroup Forum, 66 (2003) 323–327.
- [2] Gilmer, Robert Commutative semigroup rings. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1984.
- [3] Higman, Graham Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3) 2, (1952). 326–336.
- [4] Matsumura, Hideyuki Commutative ring theory. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1989.
- [5] Milner, E. C. Basic wqo- and bqo-theory. Graphs and order (Banff, Alta., 1984), 487–502, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 147, Reidel, Dordrecht, 1985.
- [6] Ribenboim, P. Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), no. 3, 293–312.
- [7] Ribenboim, P. Rings of generalized power series. II. Units and zero-divisors. J. Algebra 168 (1994), no. 1, 71–89.
- [8] Robson, J. C. Well quasi-ordered sets and ideals in free semigroups and algebras. J. Algebra 55 (1978), no. 2, 521–535.
- [9] Singh, Surject On the Hilbert basis theorem. Comm. Algebra 14 (1986), no. 6, 1117-1139.
- [10] Varadarajan, K. Noetherian generalized power series rings and modules. Comm. Algebra 29 (2001), no. 1, 245–251.
- [11] Varadarajan, K. Generalized power series modules. Comm. Algebra 29 (2001), no. 3, 1281–1294.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, LOS ANGELES CA 90032 $E\text{-}mail\ address$: gbrookf@calstatela.edu