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PROBLEMS

12104. Proposed by Joe Buhler, Larry Carter, and Richard Stong, Center for Communi-
cations Research, San Diego, CA. Consider a standard clock, where the hour, minute, and
second hands all have integer lengths and all point straight up at noon and midnight. Is
it possible for the ends of the hands to form, at some time, the vertices of an equilateral
triangle?

12105. Proposed by Gary Brookfield, California State University, Los Angeles, CA. Let r

be a real number, and let f (x)= x3 + 2rx2 + (r2 − 1)x − 2r . Suppose that f has real roots
a, b, and c. Prove a, b, c ∈ [−1, 1] and |arcsin a| + |arcsin b| + |arcsin c| =π .

12106. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For any positive integer n, prove
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12107. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Prove
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where G is Catalan’s constant
∑∞
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12108. Proposed by Yifei Pan and William D. Weakley, Purdue University Fort Wayne, Fort
Wayne, IN. Let n be a positive integer, and let β1, . . . ,βn be indeterminates over a field
F . Let M be the n-by-n matrix whose i, j -entry mij is given by mij = βi when i = j and
mij = 1 when i ̸= j . Show that the polynomial det(M) is irreducible over F .

12109. Proposed by George Stoica, Saint John, NB, Canada. Let f be a function on
[0,∞) that is nonnegative, bounded, and continuous. For a > 0 and x ≥ 0, let g(x) =
exp

(∫ a
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)
. For 0 < p < 1, prove
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