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You probably know how to factor the cubic polynomial x3 − 4x2 +
4x−3 into (x−3)(x2−x+1). But can you factor the quartic polynomial
x4 − 8x3 + 22x2 − 19x − 8?

Curiously, techniques for factoring quartic polynomials over the ra-
tionals are never discussed in modern algebra textbooks. Indeed, The-
orem 1 of this note, giving conditions for the reducibility of quartic
polynomials, appears in the literature, so far as I know, in only one
other place — on page 553 (the very last page) of Algebra, Part 1
by G. Chrystal [3], first published in 1886. Interest in the theory of
equations, the subject of this book and many others of similar vintage,
seems to have faded, and the factorization theory for quartic polyno-
mials, presented in this note, seems to have been forgotten. Perhaps it
is time for a revival!

All polynomials in this note have rational coefficients, that is, all
polynomials are in Q[x]. Moreover, we are interested only in factoriza-
tions into polynomials in Q[x]. The factorization x2−2 = (x+

√
2)(x−√

2) is not of this type since x+
√

2 and x−
√

2 are not in Q[x]. In our
context, x2 − 2 has no nontrivial factorizations and so is irreducible. A
polynomial, such as x3 − 4x2 + 4x − 3 = (x − 3)(x2 − x + 1), which
has a nontrivial factorization is said to be reducible. For a nice general
discussion about the factorization of polynomials over Q, see [1].

Basic tools for factoring polynomials are the following:

• Factor Theorem: Let f ∈ Q[x] and c ∈ Q. Then c is a root of
f (that is, f(c) = 0) if and only if x − c is a factor of f(x).

• Rational Roots Theorem: Let f(x) = anx
n + an−1x

n−1 + · · · +
a1x + a0 with integer coefficients an, an−1, . . . , a0. If p/q is a
rational number in lowest terms such that f(p/q) = 0, then p
divides a0 and q divides an.

These theorems suffice to factor any quadratic or cubic polynomial
since such a polynomial is reducible if and only if it has a root in Q.
Finding such a root is made easy by the rational roots theorem, and
then long division yields the corresponding factorization.

On the other hand, a quartic polynomial may factor into a product
of two quadratic polynomials but have no roots in Q. For example,
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f(x) = (x2 − 2)(x2 − 2) has no roots in Q but obviously factors. Thus
to determine whether or not a quartic polynomial without rational
roots is reducible, we need to know whether it factors into a product
of two quadratic polynomials. Theorem 1 shows that this question can
be answered using an associated cubic polynomial called the resolvent.

To simplify our presentation we will consider only polynomials in
reduced form: If f(x) = ax4 + bx3 + cx2 + dx + e ∈ Q[x] (with a 6= 0)
is an arbitrary quartic polynomial, then the reduced form of f is the
polynomial f(x − b/4a)/a. For example, the reduced form of f(x) =
x4 − 8x3 +22x2 − 19x− 8 is f(x+2) = x4 − 2x2 +5x− 6. The reduced
form has leading coefficient one and no degree three term. It is easy
to see how a factorization of the reduced form gives a factorization of
the original polynomial (see Example 4). Thus we lose no generality
in the following theorem by assuming that f is already in the reduced
form f(x) = x4 + cx2 + dx + e. In this circumstance, the resolvent of f
is the cubic polynomial

R(z) = z3 + 2c z2 + (c2 − 4e) z − d2.

Since it is easy to calculate the roots of f once it has been factored,
it is no surprise that the resolvent also appears in the many published
methods for finding the roots of quartic polynomials (see, for example,
[2]).

In what follows we write Q2 = {s2 | s ∈ Q} for the set of squares
in Q.

Theorem 1. The quartic polynomial f(x) = x4 + cx2 + dx + e ∈ Q[x]
factors into quadratic polynomials in Q[x] if and only if (at least) one
of the following holds:

(A) The resolvent R has a nonzero root in Q2.
(B) d = 0 and c2 − 4e ∈ Q2.

Proof. Suppose f factors as

(1) f(x) = (x2 + hx + k)(x2 + h′x + k′),

with h, h′, k, k′ ∈ Q. Multiplying (1) out and matching coefficients we
get

0 = h + h′, e = kk′,(2)

d = hk′ + h′k, c = hh′ + k + k′.(3)

In particular, h′ = −h. The equations in (3) are linear in k and k′ and
can be solved to yield

(4) 2hk = h3 + ch − d, 2hk′ = h3 + ch + d.
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From e = kk′ and (4) we get

(5) 4h2e = (2hk)(2hk′) = (h3 + ch − d)(h3 + ch + d).

Multiplying this out we get

(6) h6 + 2c h4 + (c2 − 4e) h2 − d2 = 0,

and so h2 is a root of the resolvent R. If h 6= 0, then (A) of the theorem
holds. Otherwise, h = 0 and (6) implies that d = 0 and, from (2) and
(3), we get c2 − 4e = (k + k′)2 − 4kk′ = (k − k′)2 ∈ Q2. Thus, in this
case, (B) of the theorem holds.

Now suppose that the resolvent R has a nonzero root in Q2. Then
there is some nonzero h ∈ Q such that (6) holds. Set

(7) h′ = −h, k =
1

2h
(h3 + ch − d), k′ =

1

2h
(h3 + ch + d).

Then h′, k, k′ ∈ Q and, since (5) follows from (6), the equations (2) and
(3) hold. Thus f factors into quadratic polynomials in Q[x] as in (1).

Suppose that d = 0 and c2 − 4e ∈ Q2. Then c2 − 4e = s2 for some
s ∈ Q. Set

(8) h = h′ = 0, k = (c + s)/2 and k′ = (c − s)/2.

Then h, h′, k, k′ ∈ Q and k + k′ = c, kk′ = (c2 − s2)/4 = e, f(x) =
(x2+k)(x2+k′), and so once again f factors into quadratic polynomials
in Q[x]. ¤

From the proof of this theorem we can extract an algorithm for
factoring a quartic polynomial f in reduced form. First, using the
rational roots theorem, look for a rational root of f . If c ∈ Q is such a
root, then, by the factor theorem, we know that f(x) = (x−c) g(x) for
some cubic polynomial g (which can be determined by long division).
If f has no rational roots, we look for rational roots of the resolvent R.
If h2 ∈ Q2 is a nonzero root of R, then condition (A) of Theorem 1
holds, and (7) and (1) give a factorization of f . If condition (B) of
Theorem 1 holds, then equations (8) and (1) determine a factorization
of f . If these steps fail to produce a factorization, then f is irreducible.

Example 1. Let f(x) = x4 + x2 + x + 1. Then neither f nor the
resolvent R(z) = z3 + 2z2 − 3z − 1 has a rational root. Thus f is
irreducible.

Example 2. Let f(x) = x4 + 2x2 + 5x + 11. Then f has no rational
roots, and the resolvent R(z) = z3 + 4z2 − 40z − 25 has one rational
root, namely 5, which is not in Q2. Thus f is irreducible.
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Example 3. Let f(x) = x4 − 12x2 − 3x + 2. Then f has no rational
roots, and the resolvent R(z) = z3 − 24z2 + 136z − 9 has one rational
root, namely 9 ∈ Q2. Thus f is reducible. Setting h =

√
9 = 3 in (7)

and (1) we get f(x) = (x2 + 3x − 1)(x2 − 3x − 2).

Example 4. Let f(x) = x4 − 8x3 + 22x2 − 19x − 8, the motivating
example from the beginning of this note. Then f has no rational roots.
The reduced form of this polynomial is f(x+2) = x4−2x2+5x−6, and
its resolvent is R(z) = z3−4z2+28z−25 with one rational root, namely,
1 ∈ Q2. Thus f is reducible. Setting h =

√
1 = 1 in (7) and (1) we get

f(x+2) = (x2+x−3)(x2−x+2) and so f(x) = (x2−3x−1)(x2−5x+8).

We conclude by investigating the interesting special case when f(x) =
x4 + cx2 +e. If r ∈ Q is a root of f(x) = x4 + cx2 +e then so is −r, and
x2 − r2 ∈ Q[x] divides f . Thus f is reducible if and only if it factors
into two quadratic polynomials. Since d = 0, the resolvent of f is

R(z) = z
(

z2 + 2c z + (c2 − 4e)
)

,

with roots 0,−c ± 2
√

e. Theorem 1 now provides a test for the irre-
ducibility of f :

Theorem 2. [4, Theorem 2] A quartic polynomial f(x) = x4+cx2+e ∈
Q[x] is reducible if and only if c2 − 4e ∈ Q2 or −c + 2

√
e ∈ Q2 or

−c − 2
√

e ∈ Q2. For the conditions involving
√

e to hold it is, of
course, necessary that e ∈ Q2.

Example 5. If f(x) = x4 − 3x2 + 1, then c = −3 and e = 1. We have
c2 − 4e = 5 6∈ Q2, −c+2

√
e = 5 6∈ Q2 and −c− 2

√
e = 1 ∈ Q2. Thus f

is reducible. To calculate the factorization we set h = 1 in (7) and (1)
to get f(x) = (x2 + x − 1)(x2 − x − 1).

Example 6. If f(x) = x4−16x2+4, then c = −16 and e = 4. We have
c2 − 4e = 240 6∈ Q2, −c + 2

√
e = 20 6∈ Q2 and −c − 2

√
e = 12 6∈ Q2,

and so f is irreducible.
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