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Abstract. It is shown how to associate to any polytope that is not a
simplex and any field K, a commutative integral domain D which has no
irreducible elements and which is not pre-Schreier. The integral domain D

is a generalized power series ring over K.

Let R be an integral domain with quotient field K. Recall that a ∈ R \ {0}

is said to be irreducible, or an atom, if a is not the product of two nonunits

of R, and that a is said to be prime if, for all b, c ∈ R, a|bc implies a|b or a|c.

It is easy to show that any prime element is irreducible, and much research has

been done into the question of when the converse is true.

For example, in any pre-Schreier domain, all irreducible elements are prime,

and so we recall the definition: An element a of an integral domain R is primal

if, whenever a divides bc with b and c in R, then a = b′c′ for some b′, c′ ∈ R

where b′ divides b and c′ divides c. An integral domain in which each element

is primal is said to be pre-Schreier. (A Schreier domain is a pre-Schreier

domain which is also integrally closed.) Such rings have been studied by many

authors, for example, [6], [7], [9], [13], [18], [22].

It is immediate that, in a pre-Schreier domain, each irreducible element

is prime. On the other hand, there exist examples of integral domains which

are not pre-Schreier, but in which each irreducible element is prime (see [18,

Example 3.7]). (See also [1] for a comparison of these properties and several

related ones.)

In [21], W. C. Waterhouse shows that, if each quadratic polynomial f ∈

R[X] factors into linear polynomials in R[X] whenever it factors into linear

polynomials in K[X], then every irreducible element in R is prime. The re-

lation between this result and the pre-Schreier condition was explored in [18]
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where it is shown that R is pre-Schreier if and only if each quadratic poly-

nomial f ∈ R[X] of a certain type factors into linear polynomials in R[X]

whenever it factors into linear polynomials in K[X] (see [18, Theorem 1.2]).

Since this last result holds even for domains without irreducible elements, for

which Waterhouse’s result says nothing, this leads to the question of whether

domains without irreducible elements are necessarily pre-Schreier. Integral do-

mains having no irreducible elements are considered in [8], where they are called

antimatter domains. Several constructions of antimatter domains are given

in [8], but it is not evident that these rings can fail to be pre-Schreier. Indeed

those produced by the Krull-Jaffard-Kaplansky-Ohm Theorem are Bezout, and

thus pre-Schreier. In [4] the authors showed how to produce examples of anti-

matter domains which are not pre-Schreier by reducing the construction of such

domains, via generalized power series rings, to the construction of torsion-free

monoids with the analogous properties. This preprint [4] was posted on the first

author’s web site for a time and is referenced in [1], but it was never submitted

for publication.

The purpose of this note, which supersedes [4], is to expand on our previous

preprint by using ideas from [11] to associate a monoid M = Ms(C) to a

convex polytope C ⊆ R
n such that R = K[[M,≤]] is an antimatter domain

and is pre-Schreier only if C is a simplex. (The example given in [4] is the case

that C is a square in R
2, which is mentioned here as Example 3.2.) Questions

on factorization properties in generalized power series have been studied for

some time in different contexts. For example, see [2], [12], [23], [14], [17] and

the references listed there. Also, although polytopes often occur in Noetherian

commutative ring theory, (see, for example, [19], [20]), their occurrence is much

less frequent in non-Noetherian commutative ring theory. Therefore, although

it is now known that antimatter domains which are not pre-Schreier can also be

obtained by a pull-back construction [1], we think our construction still holds

some interest.

We review in Section 1 the definition and basic properties of generalized

power series rings and show that, if M is a conical cancellative torsion-free

monoid, ≤ is the natural preorder on M , K is a field, and R = K[[M,≤]] is the

generalized power series ring, then

(1) R is an antimatter domain, if M∗ = M \ {0} is strictly downward

directed (that is, for each x, y ∈ M∗ there exists z ∈ M∗ with z < x

and z < y), and
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(2) R is not pre-Schreier, if M does not have decomposition. (M has

decomposition means that for all x, y1, y2 ∈ M such that x ≤ y1 + y2,

there are z1, z2 ∈ M such that x = z1 + z2 and z1 ≤ y1 and z2 ≤ y2.)

Thus our ring question is reduced to finding a strictly downward directed conical

monoid which does not have decomposition. In Section 2, using ideas from [11],

we associate a strictly downward directed conical monoid Ms(C), to a convex

polytope C ⊆ R
n and show that Ms(C) has decomposition if and only if C is a

simplex. In Section 3, we put the above results together to get generalized power

series rings K[[M,≤]] which are antimatter domains but are not pre-Schreier.

The authors wish to thank K. R. Goodearl who pointed out the geometric

aspect of an example in a previous version of this paper. The authors also

thank D. D. Anderson and M. Zafrullah for sending us a copy of [1] in which

antimatter domains which are not pre-Schreier are produced from the D + M

construction.

1. Generalized Power Series Rings

In this section we define generalized power series rings and discuss when

such a rings are antimatter domains or pre-Schreier domains.

Let (M,≤) be a strictly ordered monoid; that is, M is a commutative

monoid and ≤ is a partial order on M such x < y implies x + z < y + z for

all x, y, z ∈ M . A subset N of M is said to be narrow if each subset of N

consisting of pairwise order-incomparable elements in the ≤ order is finite.

Let R be a commutative ring. For a function f : M → R the support of

f is defined as supp(f) = {x ∈ M | f(x) 6= 0}. Then the generalized power

series ring R[[M,≤]] is the set of all such functions whose support is Artinian

and narrow in the ≤ partial ordering. Addition is defined by (f + g)(x) =

f(x) + g(x) and multiplication by (fg)(x) =
∑

x1+x2=x f(x1)g(x2) for x ∈ M .

Since M is strictly ordered, the sum is in fact finite. See [16] for the details of

this construction.

For f ∈ R[[M,≤]], we will write minsupp(f) for the (finite) set of minimal

elements in the support of f . For x ∈ M , we write Xx for the function such

that supp(Xx) = {x} and Xx(x) = 1. Thus XxXy = Xx+y for all x, y ∈ M .

Any monoid M has a preorder, defined by x ≤ y if x + z = y for some

z ∈ M , which we call the natural preorder. In general, x ≤ y ≤ x does not

imply x = y, so the natural preorder is not always a partial order on M .
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A monoid M is conical if x + y = 0 in M implies x = y = 0. It is easy to

show that if ≤ is the natural preorder on a conical cancellative monoid, then

(M,≤) is a strictly ordered monoid.

Proposition 1.1. Let K be a field. Let M be a conical cancellative torsion-

free monoid and ≤ the natural preorder on M . Then the following hold:

(1) K[[M,≤]] is a domain.

(2) f ∈ K[[M,≤]] is a unit if and only if f(0) 6= 0.

(3) There is a total order ¹ on M such that a ≤ b implies a ¹ b for all a, b

in M . For 0 6= f ∈ K[[M,≤]], define deg(f) to be the least element in

supp(f) in the ¹ order. Then for all nonzero f, g ∈ K[[M,≤]] we have

deg(fg) = deg(f)+deg(g). In particular, if f |g, then deg(f) ≤ deg(g).

Proof. (1) Since M is cancellative and torsion-free, this follows from [16,

1.20]. (2) Since 0 ≤ x for all x ∈ M , this follows from [16, 2.3]. (3) Since

M is cancellative and torsion-free, the existence of ¹ comes from [16, 1.10]. If

A ⊆ M is Artinian and narrow in the order ≤, then A is Artinian and narrow in

the order ¹ [16, 1.7]. Thus deg(f) is defined for f ∈ K[[M,≤]]. The properties

of deg(f) are in [15, 4.2]. ¤

Proposition 1.2. Let K and (M,≤) be as Proposition 1.1. Suppose that

M∗ = M \ {0} is strictly downward directed; that is, for each x, y ∈ M∗ there

exists z ∈ M∗ with z < x and z < y. Then K[[M,≤]] is an antimatter domain.

Proof. We must show that all nonzero nonunits of K[[M,≤]] are reducible.

If 0 6= f ∈ K[[M,≤]] is not a unit, then f(0) = 0 by Proposition 1.1; that

is, minsupp(f) ⊆ M∗. Since M∗ is strictly downward directed, there exists

y ∈ M∗ such that y < x for each x ∈ minsupp(f). In fact, the same is true

of all elements of supp(f) since each is greater than an element of minsupp(f);

that is, for each x ∈ supp(f) there is x′ 6= 0 such that x = y + x′.

Define g : M → K by g(x) = f(x + y) for x ∈ M . Since M is cancellative,

the map x′ 7→ y + x′ is an order isomorphism from supp(g) to supp(f). Since

supp(f) is narrow and Artinian, so is supp(g) and hence g ∈ K[[M,≤]]. More-

over, g(0) = f(y) = 0 since y 6∈ supp(f), and so g is not a unit. Since y 6= 0,

Xy is not a unit either. It is easy to check that f = Xyg, and so we have shown

that f is reducible. ¤

To discuss the pre-Schreier property in generalized power series rings, we

need to define the corresponding monoid property: A partially ordered monoid

(M,≤) has decomposition (or is a decomposition monoid) if, for all x, y1, y2 ∈



GENERALIZED POWER SERIES DOMAINS 5

M such that x ≤ y1 +y2, there are z1, z2 ∈ M such that x = z1 +z2 and z1 ≤ y1

and z2 ≤ y2 (see, for example, [3], [10] and [11, Proposition 2.1]). Notice that

a domain R is pre-Schreier if and only if the multiplicative monoid R∗ = R\{0}

has decomposition (see [5]).

Proposition 1.3. Let K and (M,≤) be as in Proposition 1.1. If K[[M,≤]]

is pre-Schreier, then M has decomposition.

Proof. Suppose x ≤ y1 + y2 in M . Then x + z = y1 + y2 for some z ∈ M

and so XxXz = Xy1Xy2 . In particular, Xx|Xy1Xy2 . Since K[[M,≤]] is pre-

Schreier, there are f1, f2 ∈ K[[M,≤]] such that Xx = f1f2 with f1|X
y1 and

f2|X
y2 in K[[M,≤]]. The functions f1 and f2 must be nonzero since Xx 6= 0.

So we can set z1 = deg(f1) and z2 = deg(f2). Then, using Proposition 1.1(3), we

get x = deg(Xx) = deg(f1)+deg(f2) = z1 + z2 and z1 = deg(f1) ≤ deg(Xy1) =

y1 and similarly z2 ≤ y2. ¤

2. Monoids and Simplices

Let R be the set of real numbers and R
+ = {a ∈ R | 0 ≤ a}. Let V be an R-

vector space. If x1, x2, . . . , xn ∈ V and a1, a2, . . . , an ∈ R
+ are such that

∑
i ai =

1, then
∑

i aixi is called a convex combination of the elements x1, x2, . . . , xn.

A subset C of V is convex if it is closed under convex combinations of finite

subsets of C. Since V is convex, and any intersection of convex subsets is

convex, any subset X of V is contained in a smallest convex subset, its convex

hull, written 〈X〉. A polytope is the convex hull of a finite subset X of V .

We use the following notation and terminology from [11]. A subset X ⊆ V

is said to be affinely dependent if x0 =
∑n

i=1 aixi for some x0, x1, . . . , xn ∈

X, a1, . . . , an ∈ R with
∑n

i=1 ai = 1. Otherwise, X is said to be affinely

independent. A (classical) simplex in a real vectorspace V is a convex

subset of V that is the convex hull of a finite set of affinely independent points

of V . If C1 and C2 are convex subsets of the real vector spaces V1 and V2

respectively, a map f : C1 → C2 is said to be affine if f preserves convex

combinations.

Let (X,≤) be a partially ordered set, let Y be an arbitrary set and denote

by XY the set of functions from Y to X. The pointwise ordering ≤ on the

set XY is defined by f ≤ g if f(y) ≤ g(y) for each y ∈ Y . We also define f ¿ g

if and only if f(y) < g(y) for each y ∈ Y . The corresponding partial ordering

¿ on XY is called the strict ordering. That is, f ¿ g if and only if either

f ¿ g or f = g.
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If C is a compact convex set in a real vector space V , we denote by Aff(C)

the group of all affine continuous real-valued functions with pointwise addition.

Then Aff(C) is an ordered group under the pointwise ordering, and also under

the strict ordering. In this section we give an exposition of some needed results

on the ordered groups (Aff(C),≤) and (Aff(C),¿).

For a convex subset C of the vector space V , let M(C) and Ms(C) be the

positive cones of (Aff(C),≤) and (Aff(C),¿) respectively. That is, M(C) =

{f ∈ Aff(C) | f ≥ 0} and Ms(C) = {f ∈ Aff(C) | f À 0} ∪ {0} where 0

denotes the zero function in Aff(C). The natural preorders on these monoids

are ≤ and ¿ respectively. Since M(C) and Ms(C) are obviously conical, they

are strictly ordered monoids under these orderings.

Lemma 2.1. Let C = 〈X〉 for some X ⊆ V . Then the map Φ : M(C) →

(R+)X defined by Φ(f) = (f(x))x∈X , is an injective monoid homomorphism.

Moreover, f ≤ g if and only if Φ(f) ≤ Φ(g) and, if f , g ∈ Ms(C), then f ¿ g

if and only if Φ(f) ¿ Φ(g).

Proof. This is a special case of [11, Theorem 5.20]. ¤

Suppose again that C = 〈X〉 for some X ⊆ V . For f ∈ M(C), define the

support of f by suppX(f) = {x ∈ X | f(x) > 0}, and let Γ(C) = {suppX(f) |

f ∈ M(C)}. Of course ∅ = suppX(0) ∈ Γ(C), and, if A = suppX(f) and

B = suppX(g) for f, g ∈ M(C), then

A ∪ B = suppX(f + g) ∈ Γ(C).

Thus (Γ(C), ∪, ∅) is a monoid.

An element x ∈ C is an extreme point of C if 〈C \ {x}〉 6= C, or equiv-

alently x is not a convex combination of other elements of C. Obviously, if

C = 〈X〉, then all extreme points of C must be in X, and any finite subset of

nonextreme points can be removed from X without changing its convex hull.

Lemma 2.2. If C = 〈X〉 for some X ⊆ V , then x ∈ X is an extreme point

if and only if X \ {x} ∈ Γ(C).

Proof. If x ∈ X is an extreme point then, by [11, Theorem 5.14], there

is some f ∈ M(C) such that f−1(0) = {x}; that is, suppX(f) = X \ {x}.

Conversely, if suppX(f) = X \{x} ∈ Γ(C), f ∈ M(C), and x is not an extreme

point of X, then x =
∑

y∈X\{x} ayy with
∑

y∈X\{x} ay = 1. But since suppX(f)

= X \ {x}, 0 = f(x) =
∑

y∈X\{x} ayf(y). But this impossible since f(y) > 0

for all y ∈ X \ {x}, ay ≥ 0 for all y ∈ X and
∑

y∈X\{x} ay = 1. ¤
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Proposition 2.3. Let X be a finite subset of V , let C = 〈X〉 and assume

that all elements of X are extreme points of C. The following are equivalent:

(1) C is a simplex.

(2) M(C) ∼= ((R+)n,≤) for some n ∈ N.

(3) M(C) has decomposition.

(3′) Ms(C) has decomposition.

(4) Γ(C) has decomposition.

(5) {x} ∈ Γ(C) for each x ∈ X.

(6) X is independent.

Proof. (1) ⇒ (2) Let Y be a finite independent subset of V such that

C = 〈Y 〉. It suffices to show that the homomorphism Φ : M(C) → (R+)Y from

Lemma 2.1 is surjective. Given an element (rx)x∈Y ∈ (R+)Y , we can define a

function f : C → R
+ by f(y) =

∑
x∈Y axrx where y =

∑
x∈Y axx is the unique

representation of y as a convex combination of elements of Y . It is easy to

check that f ∈ M(C) and that Φ(f) = (rx)x∈Y . Thus Φ is surjective.

(2) ⇒ (3) Since (R+)n has decomposition, this is clear. (3) ⇒ (4) Let

A ⊆ B1 ∪ B2 in Γ(C), where A = suppX(f), B1 = suppX(g1) and B2 =

suppX(g2) for f, g1, g2 ∈ M(C). To show that there are A1, A2 ∈ Γ(C) such

that A1 ⊆ B1, A2 ⊆ B2 and A = A1 ∪A2, observe that for all x ∈ suppX(f) we

have g1(x) + g2(x) > 0. Let

r = max{f(x)/(g1(x) + g2(x)) | x ∈ suppX(f)}.

Then, by Lemma 2.1, f ≤ r(g1 + g2). Since M(C) has decomposition by

hypothesis, f = f1 + f2 with fi ∈ M(C) and fi ≤ rgi for i = 1, 2. Let A1 =

suppX(f1) and A2 = suppX(f2). Then the claims are immediate. (4) ⇒ (5)

Let Y be minimal among elements of Γ(C) which contain x. We will show that

Y = {x}. Suppose to the contrary that x 6= y ∈ Y . By Lemma 2.2, A = X \{x}

and B = X \ {y} are in Γ(C). Since B ⊆ A ∪ Y = X, there are B1, B2 ∈ Γ(C)

such that B1 ⊆ A, B2 ⊆ Y and B = B1 ∪B2. Since x ∈ B but x 6∈ A, we must

have x ∈ B2. Since B2 ⊆ Y , the minimality of Y then implies Y = B2. In

particular, y ∈ Y = B2 ⊆ B. This contradicts the definition of B. (5) ⇒ (6) By

assumption, for each x ∈ X there is fx ∈ M(C) such that suppX(fx) = {x}. If

z =
∑

x∈X axx ∈ C, then for each x ∈ X, fx(z) = axfx(x). Thus ax is uniquely

determined by the equation ax = fx(z)/fx(x). (6) ⇒ (1) Definition.

It remains to show that (3′) is equivalent to the other properties. This

equivalence is a special case of a general result in [11] which we discuss next. ¤
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In [11, Theorem 11.4], a general relationship between Choquet simplices and

interpolation groups is proved. For the definitions of these concepts, see [11,

Chapters 2 and 10]. All we need about interpolation groups is that a partially

ordered group (G,≤) is an interpolation group if and only the positive cone

G+ of G has decomposition. (See [11, pages 22–23], especially [11, Proposition

2.1].) The only fact that we require about Choquet simplices is that, if C is a

subset of a finite dimensional vector space V , then C is a Choquet simplex if and

only if C is a classical simplex [11, Theorem 10.16]. The equivalence (3) ⇔ (3′)

of Proposition 2.3 now follows from the following theorem. (Actually we only

need the implication (3′) ⇒ (3) in what follows, and this only uses (c) ⇒ (b) of

Theorem 2.4, for which the proof given in [11] is elementary and self contained.)

Theorem 2.4. [11, Theorem 11.4] Let C be a compact convex subset of a

locally convex Hausdorff topological real vector space. The following are equiv-

alent:

(a) C is a Choquet simplex.

(b) (Aff(C),≤) is an interpolation group.

(c) (Aff(C),¿) is an interpolation group.

3. Examples

The following result gives a method of obtaining generalized power series

antimatter domains which are not pre-Schreier.

Theorem 3.1. Let C be a convex polytope that is not a simplex, let M =

Ms(C) and let K be a field. Then K[[M,¿]] is an antimatter domain that is

not pre-Schreier.

Proof. To see that M∗ = M \ {0} = {f ∈ Aff(C) | f À 0} is strictly

downward directed, we begin by letting X be the set of extreme points of C.

Let Φ : (M(C)) → (R+)X be the restriction map as defined in Lemma 2.1.

Now if f , g ∈ M∗, let w = min{f(x), g(x) | x ∈ X}. The constant function

w/2 is in Ms(C) and it follows by Lemma 2.1, that w/2 ¿ f and w/2 ¿ g.

Thus M∗ = M \ {0} is strictly downward directed. Therefore by Proposition

1.2, K[[M,¿]] is an antimatter domain. Since C is not a simplex, Proposition

2.3 implies that Ms(C) does not have decomposition. Therefore by Proposition

1.3, K[[M,¿]] is not pre-Schreier. ¤

Example 3.2. It is well known that ‘most’ convex polytopes are not sim-

plices. The easiest example is the unit square C = 〈X〉 ⊆ R
2 where X =
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{(0, 0), (1, 0), (0, 1), (1, 1)}. The set X is not independent since the center of the

square (1/2, 1/2) does not have a unique representation as a convex combination

of the elements of X: (1/2, 1/2) = 1/2(0, 0) + 1/2(1, 1) = 1/2(1, 0) + 1/2(0, 1).

Thus C is not a simplex, and so K[[Ms(C),¿]] is an antimatter domain that

is not pre-Schreier.

Remark 3.3. Although, as shown in the proof of Theorem 3.1, Ms(C) is

strictly downward directed for any polytope C, this is not true of M(C). For

example, let C = [0, 1], a unit interval in the real line and let f, g ∈ M(C) be

such that f(0) = g(1) = 0 and f(1) = g(0) = 1. Then f, g ∈ M∗, but there is

no nonzero h such that h < f and h < g. Thus, unlike Ms(C), M(C) is not

strictly downward directed.

At the expense of making the exposition less accessible, we can give the

following generalization of Theorem 3.1, where the finite subset X of V is

replaced by a compact subset of an R-vector space V . The set of all extreme

points of a compact convex set C is called the extreme boundary of C and

is denoted ∂eC.

Theorem 3.4. Let C be a compact convex subset of a locally convex Haus-

dorff topological real vector space V with ∂eC compact, let M = Ms(C) and let

K be a field. If C is not a Choquet simplex, then K[[M,¿]] is an antimatter

domain that is not pre-Schreier.

Proof. Again, by Proposition 1.2, K[[M,¿]] is an antimatter domain.

Since C is not a Choquet simplex, then by Theorem 2.4 and [11, Proposition

2.1], M does not have decomposition. Therefore by Proposition 1.3, K[[M,¿]]

is not pre-Schreier. ¤
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